58 research outputs found

    Superconductivity at 36 K in Gadolinium-arsenide Oxides GdO1x_{1-x}Fx_{x}FeAs

    Full text link
    In this paper we report the fabrication and superconducting properties of GdO1x_{1-x}Fx_{x}FeAs. It is found that when x is equal to 0.17, GdO0.83_{0.83}F0.17_{0.17}FeAs is a superconductor with the onset transition temperature Tcon_{c}^{on}\approx 36.6K. Resistivity anomaly near 130K was observed for all samples up to x = 0.17, such a phenomenon is similar to that of LaO1x_{1-x}Fx_{x}FeAs. Hall coefficient indicates that GdO0.83_{0.83}F0.17_{0.17}FeAs is conducted by electron-like charge carriers.Comment: 3 pages, 4 figure

    Growth and characterization of A_{1-x}K_xFe_2As_2 (A = Ba, Sr) single crystals with x=0 - 0.4

    Full text link
    Single crystals of A1x_{1-x}Kx_xFe2_2As2_2 (A=Ba, Sr) with high quality have been grown successfully by FeAs self-flux method. The samples have sizes up to 4 mm with flat and shiny surfaces. The X-ray diffraction patterns suggest that they have high crystalline quality and c-axis orientation. The non-superconducting crystals show a spin-density-wave (SDW) instability at about 173 K and 135 K for Sr-based and Ba-based compound, respectively. After doping K as the hole dopant into the BaFe2_2As2_2 system, the SDW transition is smeared, and superconducting samples with the compound of Ba1x_{1-x}Kx_xFe2_2As2_2 (0 <x< x \leqslant 0.4) are obtained. The superconductors characterized by AC susceptibility and resistivity measurements exhibit very sharp superconducting transition at about 36 K, 32 K, 27 K and 23 K for x= 0.40,0.28,0.25 and 0.23, respectively.Comment: 9 pages, 6 figures, 1 table. This paper together with new data are modified into a new pape

    Pairing symmetry and properties of iron-based high temperature superconductors

    Full text link
    Pairing symmetry is important to indentify the pairing mechanism. The analysis becomes particularly timely and important for the newly discovered iron-based multi-orbital superconductors. From group theory point of view we classified all pairing matrices (in the orbital space) that carry irreducible representations of the system. The quasiparticle gap falls into three categories: full, nodal and gapless. The nodal-gap states show conventional Volovik effect even for on-site pairing. The gapless states are odd in orbital space, have a negative superfluid density and are therefore unstable. In connection to experiments we proposed possible pairing states and implications for the pairing mechanism.Comment: 4 pages, 1 table, 2 figures, polished versio
    corecore