16 research outputs found

    Effects of Deoxynivalenol and Its Acetylated Derivatives on Lipid Metabolism in Human Normal Hepatocytes

    No full text
    Deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-ADON) and 15-acetyldeoxynivalenol (15-ADON) belong to type B trichothecenes that are widely detected in agricultural products as one of the most common classes of mycotoxins. In the present study, we aimed to characterize the alteration of lipid metabolism in normal human hepatocytes by poisoning with DON and its acetylated derivatives. After verifying the hepatotoxicity of the three toxins, DON, 15-ADON, and 3-ADON, the mRNA expression was determined by transcriptomics, and the results showed that DON and 15-ADON had a significant regulatory effect on the transcriptome, in which glycerophospholipid metabolism pathway and phospholipase D signaling pathways have not been reported in studies of DON and its acetylated derivatives. For further validation, we explored lipid metabolism in depth and found that PC (15:0/16:0), PC (16:1/18:3), PC (18:1/22:6), PC (16:0/16:0), PC (16:0/16:1), PC (16:1/18:1), PC (14:0/18:2), PE (14:0/16:0) and PE (18:1/18:3) were downregulated for all nine lipids. Combined with the transcriptome results, we found that hepatic steatosis induced by the three toxins, DON, 15-ADON and 3-ADON, was associated with altered expression of genes related to lipid oxidation, lipogenesis and lipolysis, and their effects on lipid metabolism in L-02 cells were mainly realized through the PC-PE cycle

    Establishment and optimization of an in vitro guinea pig oocyte maturation system.

    No full text
    Guinea pigs are a valuable animal model for studying various diseases, including reproductive diseases. However, techniques for generating embryos via embryo engineering in guinea pigs are limited; for instance, in vitro maturation (IVM) technique is preliminary for guinea pig oocytes. In this study, we aimed to establish and optimize an IVM method for guinea pig oocytes by investigating various factors, such as superovulation induced by different hormones, culture supplementation (e.g., amino acids, hormone, and inhibitors), culture conditions (e.g., oocyte type, culture medium type, and treatment time), and in vivo hCG stimulation. We found that oocytes collected from guinea pigs with superovulation induced by hMG have a higher IVM rate compared to those collected from natural cycling individuals. Moreover, we found that addition of L-cysteine, cystine, and ROS in the culture medium can increase the IVM rate. In addition, we demonstrated that in vivo stimulation with hCG for 3-8 h can further increase the IVM rate. As a result, the overall IVM rate of guinea pig oocytes under our optimized conditions can reach ~69%, and the mature oocytes have high GSH levels and normal morphology. In summary, we established an effective IVM method for guinea pig oocytes by optimizing various factors and conditions, which provides a basis for embryo engineering using guinea pigs as a model

    The microtubule morphology of MII oocytes from guinea pigs was divided into two types.

    No full text
    For MII oocytes with normal spindles and aggregated chromosomes (A, B and C in the top panel), the chromosomes were distributed and aggregated on the equatorial plate, while for MII oocytes with abnormal spindles and dispersed chromosomes (D, E and F in the bottom panel), the chromosomes could not be neatly distributed on the equatorial plate and are in a diffusion state. A and D are for Hoechst 33342 staining, B and E are for β-tubulin staining, and C and F are merged for A and B, and D and E, respectively. Bar in 50 μm.</p

    Types of oocytes from guinea pigs and their meiotic progression during IVM.

    No full text
    The arrow indicates the first polar body of the matured oocytes, indicating the oocytes have entered the MII phase. (A) Matured oocytes stained with Cell Truck Bule CMF2HC under the microscope after treatment with ROS for 12 hours. (B) Immature oocytes stained with Cell Truck Bule CMF2HC under the microscope after treatment with ROS for 12 hours. (C) After the removal of IMBX, the fluorescence intensity of matured oocytes treated with IBMX was significantly stronger than that treated with ROS. (D) The fluorescence intensity of GSH in MII oocytes cultured in the maturation medium was relatively weaker, and the first polar body was not obvious as well, compared with that cultured in the maturation medium with ROS. (E) The fluorescence intensity of GSH in MII oocytes cultured in MTA medium supplemented with L-cysteine and cystine was stronger than that of GSH in MII oocytes cultured in basic medium. (F) The fluorescence intensity of GSH cultured in the basic medium was much lower than other groups.</p

    S1 Dataset -

    No full text
    Guinea pigs are a valuable animal model for studying various diseases, including reproductive diseases. However, techniques for generating embryos via embryo engineering in guinea pigs are limited; for instance, in vitro maturation (IVM) technique is preliminary for guinea pig oocytes. In this study, we aimed to establish and optimize an IVM method for guinea pig oocytes by investigating various factors, such as superovulation induced by different hormones, culture supplementation (e.g., amino acids, hormone, and inhibitors), culture conditions (e.g., oocyte type, culture medium type, and treatment time), and in vivo hCG stimulation. We found that oocytes collected from guinea pigs with superovulation induced by hMG have a higher IVM rate compared to those collected from natural cycling individuals. Moreover, we found that addition of L-cysteine, cystine, and ROS in the culture medium can increase the IVM rate. In addition, we demonstrated that in vivo stimulation with hCG for 3–8 h can further increase the IVM rate. As a result, the overall IVM rate of guinea pig oocytes under our optimized conditions can reach ~69%, and the mature oocytes have high GSH levels and normal morphology. In summary, we established an effective IVM method for guinea pig oocytes by optimizing various factors and conditions, which provides a basis for embryo engineering using guinea pigs as a model.</div
    corecore