45 research outputs found

    Analysis of the genetic architecture of maize kernel size traits by combined linkage and association mapping

    Get PDF
    Kernel size‐related traits are the most direct traits correlating with grain yield. The genetic basis of three kernel traits of maize, kernel length (KL), kernel width (KW) and kernel thickness (KT), was investigated in an association panel and a biparental population. A total of 21 single nucleotide polymorphisms (SNPs) were detected to be most significantly (P \u3c 2.25 × 10−6) associated with these three traits in the association panel under four environments. Furthermore, 50 quantitative trait loci (QTL) controlling these traits were detected in seven environments in the intermated B73 × Mo17 (IBM) Syn10 doubled haploid (DH) population, of which eight were repetitively identified in at least three environments. Combining the two mapping populations revealed that 56 SNPs (P \u3c 1 × 10−3) fell within 18 of the QTL confidence intervals. According to the top significant SNPs, stable‐effect SNPs and the co‐localized SNPs by association analysis and linkage mapping, a total of 73 candidate genes were identified, regulating seed development. Additionally, seven miRNAs were found to situate within the linkage disequilibrium (LD) regions of the co‐localized SNPs, of which zma‐miR164e was demonstrated to cleave the mRNAs of Arabidopsis CUC1, CUC2 and NAC6 in vitro. Overexpression of zma‐miR164e resulted in the down‐regulation of these genes above and the failure of seed formation in Arabidopsis pods, with the increased branch number. These findings provide insights into the mechanism of seed development and the improvement of molecular marker‐assisted selection (MAS) for high‐yield breeding in maize

    Case report: Aggressive progression of acute heart failure due to juvenile tuberculosis-associated Takayasu arteritis with aortic stenosis and thrombosis

    Get PDF
    BackgroundTakayasu arteritis (TA) is a chronic granulomatous vasculitis with unknown pathophysiology. TA with severe aortic obstruction has a poor prognosis. However, the efficacy of biologics and appropriate timing of surgical intervention remain controversial. We report a case of tuberculosis (TB)-associated TA with aggressive acute heart failure (AHF), pulmonary hypertension (PH), thrombosis, and seizure, who failed to survive after surgery.Case presentationA 10-year-old boy who developed a cough with chest tightness, shortness of breath, hemoptysis with reduced left ventricular ejection fraction, PH, and increased C-reactive protein and erythrocyte sedimentation rate was hospitalized at the pediatric intensive care unit of our hospital. He had strongly positive purified protein derivative skin test and interferon-gamma release assay result. Computed tomography angiography (CTA) showed occlusion of proximal left subclavian artery and stenosis of descending aorta and upper abdominal aorta. His condition did not improve after administration of milrinone, diuretics, antihypertensive agents, and intravenous methylprednisolone pulse followed by oral prednisone. Intravenous tocilizumab was administered for five doses, followed by two doses of infliximab, but his HF worsened, and CTA on day 77 showed complete occlusion of the descending aorta with large thrombus. He had a seizure on day 99 with deterioration of renal function. Balloon angioplasty and catheter-directed thrombolysis were performed on day 127. Unfortunately, the child's heart function continued to deteriorate and died on day 133.ConclusionTB infection may be related to juvenile TA. The biologics, thrombolysis, and surgical intervention failed to achieve the anticipated effect in our case with aggressive AHF due to severe aortic stenosis and thrombosis. More studies are needed to determine the role of biologics and surgery in such dire cases

    SARS-CoV-2 Nucleocapsid Protein Has DNA-Melting and Strand-Annealing Activities With Different Properties From SARS-CoV-2 Nsp13

    Get PDF
    Since December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread throughout the world and has had a devastating impact on health and economy. The biochemical characterization of SARS-CoV-2 proteins is important for drug design and development. In this study, we discovered that the SARS-CoV-2 nucleocapsid protein can melt double-stranded DNA (dsDNA) in the 5′-3′ direction, similar to SARS-CoV-2 nonstructural protein 13. However, the unwinding activity of SARS-CoV-2 nucleocapsid protein was found to be more than 22 times weaker than that of SARS-CoV-2 nonstructural protein 13, and the melting process was independent of nucleoside triphosphates and Mg2+. Interestingly, at low concentrations, the SARS-CoV-2 nucleocapsid protein exhibited a stronger annealing activity than SARS-CoV-2 nonstructural protein 13; however, at high concentrations, it promoted the melting of dsDNA. These findings have deepened our understanding of the SARS-CoV-2 nucleocapsid protein and will help provide novel insights into antiviral drug development

    Noise Characteristics of MgZnO-Based Metal–Semiconductor–Metal Photodetector

    No full text

    Complete genomic sequence and comparative analysis of the genome segments of sweet potato chlorotic stunt virus in China.

    No full text
    BACKGROUND:Sweet potato chlorotic stunt virus (family Closteroviridae, genus Crinivirus) features a large bipartite, single-stranded, positive-sense RNA genome. To date, only three complete genomic sequences of SPCSV can be accessed through GenBank. SPCSV was first detected from China in 2011, only partial genomic sequences have been determined in the country. No report on the complete genomic sequence and genome structure of Chinese SPCSV isolates or the genetic relation between isolates from China and other countries is available. METHODOLOGY/PRINCIPAL FINDINGS:The complete genomic sequences of five isolates from different areas in China were characterized. This study is the first to report the complete genome sequences of SPCSV from whitefly vectors. Genome structure analysis showed that isolates of WA and EA strains from China have the same coding protein as isolates Can181-9 and m2-47, respectively. Twenty cp genes and four RNA1 partial segments were sequenced and analyzed, and the nucleotide identities of complete genomic, cp, and RNA1 partial sequences were determined. Results indicated high conservation among strains and significant differences between WA and EA strains. Genetic analysis demonstrated that, except for isolates from Guangdong Province, SPCSVs from other areas belong to the WA strain. Genome organization analysis showed that the isolates in this study lack the p22 gene. CONCLUSIONS/SIGNIFICANCE:We presented the complete genome sequences of SPCSV in China. Comparison of nucleotide identities and genome structures between these isolates and previously reported isolates showed slight differences. The nucleotide identities of different SPCSV isolates showed high conservation among strains and significant differences between strains. All nine isolates in this study lacked p22 gene. WA strains were more extensively distributed than EA strains in China. These data provide important insights into the molecular variation and genomic structure of SPCSV in China as well as genetic relationships among isolates from China and other countries

    Phylogenetic analysis of genomic RNA1 (A) and RNA2 (B) segments of five isolates determined in China and three isolates retrieved from GenBank.

    No full text
    <p>Neighbor-joining trees were constructed via the maximum composite likelihood substitution model using MEGA (version 4.0). Numbers at branches represent bootstrap values of 1000 replicates. The scale bar shows the number of nucleotide substitutions per site.</p
    corecore