73 research outputs found

    Recent progress in rechargeable alkali metal–air batteries

    Get PDF
    AbstractRechargeable alkali metal–air batteries are considered as the most promising candidate for the power source of electric vehicles (EVs) due to their high energy density. However, the practical application of metal–air batteries is still challenging. In the past decade, many strategies have been purposed and explored, which promoted the development of metal–air batteries. The reaction mechanisms have been gradually clarified and catalysts have been rationally designed for air cathodes. In this review, we summarize the recent development of alkali metal–air batteries from four parts: metal anodes, electrolytes, air cathodes and reactant gases, wherein we highlight the important achievement in this filed. Finally problems and prospective are discussed towards the future development of alkali metal–air batteries

    LiCo-Net: Linearized Convolution Network for Hardware-efficient Keyword Spotting

    Full text link
    This paper proposes a hardware-efficient architecture, Linearized Convolution Network (LiCo-Net) for keyword spotting. It is optimized specifically for low-power processor units like microcontrollers. ML operators exhibit heterogeneous efficiency profiles on power-efficient hardware. Given the exact theoretical computation cost, int8 operators are more computation-effective than float operators, and linear layers are often more efficient than other layers. The proposed LiCo-Net is a dual-phase system that uses the efficient int8 linear operators at the inference phase and applies streaming convolutions at the training phase to maintain a high model capacity. The experimental results show that LiCo-Net outperforms single-value decomposition filter (SVDF) on hardware efficiency with on-par detection performance. Compared to SVDF, LiCo-Net reduces cycles by 40% on HiFi4 DSP

    Endogenous and exogenous galectin-3 promote the adhesion of tumor cells with low expression of MUC1 to HUVECs through upregulation of N-cadherin and CD44

    Get PDF
    Tumor cell-endothelial adhesion is one of the key steps in tumor cell haematogenous dissemination in metastasis and was previously shown to be mediated by interaction of galectin-3 with the transmembrane mucin protein MUC1. In this study, the effect of exogenous as well as endogenous galectin-3 on adhesion of two cell lines (low MUC1-expressing human prostate cancer PC-3M cells and non-small-cell lung cancer A549 cells) to monolayer of umbilical vein endothelial cells (HUVECs) was investigated. We found that suppression of endogenous galectin-3 expression reduced tumor cell adhesion to HUVECs and also decreased cell invasion and migration. Exogenous galectin-3 promoted tumor cell adhesion to HUVECs by entering cells. Both exogenous and endogenous galectin-3 upregulated the expression of β-catenin and increased β-catenin nuclear accumulation, and subsequently upregulated the expression of N-cadherin and CD44. We deduced that both exogenous as well as endogenous galectin-3 promoted low MUC1-expressing cancer cell adhesion to HUVECs by increasing the expression of N-cadherin and CD44 via an increase of nuclear β-catenin accumulation. These results were confirmed further by using a β-catenin/TCF transcriptional activity inhibitor, N-cadherin or CD44 siRNAs. Taken together, our results suggest a new molecular mechanism of galectin-3-mediated cell adhesion in cancer metastasis

    The role of upfront primary tumor resection in asymptomatic patients with unresectable stage IV colorectal cancer: A systematic review and meta-analysis

    Get PDF
    BackgroundControversy exists over the role of upfront primary tumor resection (PTR) in asymptomatic patients with unresectable stage IV colorectal cancer (CRC). The purpose of this study was to evaluate the effect of upfront PTR on survival outcomes and adverse outcomes.MethodsSearches were conducted on PubMed, EMBASE, Web of Science, and Cochrane Library from inception to August 2021. Studies comparing survival outcomes with or without adverse outcomes between PTR and non-PTR treatments were included. Review Manager 5.3 was applied for meta-analyses with a random-effects model whenever possible.ResultsOverall, 20 studies with 3,088 patients were finally included in this systematic review. Compared with non-PTR, upfront PTR was associated with better 3-year (HR: 0.69, 95% CI, 0.57–0.83, P = 0.0001) and 5-year overall survival (OS) (HR: 0.77, 95% CI, 0.62–0.95, P = 0.01), while subgroup analysis indicated that there was no significant difference between upfront PTR and upfront chemotherapy (CT) group. In addition, grade 3 or higher adverse effects due to CT were more frequent in the PTR group with marginal significance (OR: 1.74, 95% CI, 0.99–3.06, P = 0.05), and other adverse outcomes were comparable.ConclusionsPTR might be related to improved OS for asymptomatic patients with unresectable stage IV CRC, whereas receiving upfront CT is a rational alternative without detrimental influence on survival or adverse outcomes compared with upfront PTR.Systematic Review Registrationhttps://www.crd.york.ac.uk/prospero/display_record.php?RecordID=27267

    Trace minimization principles for Positive Semi-Definite Pencils

    No full text
    This paper is concerned with inf trace(X H AX) subject to X H BX = J for a Hermitian matrix pencil A − λB, where J is diagonal and J 2 = I (the identity matrix of apt size). The same problem was investigated earlier by Kovač-Striko and Veselić (Linear Algebra Appl., 216:139–158, 1995) for the case in which B is assumed nonsingular. But in this paper, B is no longer assumed nonsingular, and in fact A − λB is even allowed to be a singular pencil. It is proved, among others, that the infimum is finite if and only if A − λB is a positive semi-definite pencil (in the sense that there is a real number λ0 such that A − λ0B is positive semi-definite). The infimum, when finite, can be expressed in terms of the finite eigenvalues of A − λB. Sufficient and necessary conditions for the attainability of the infimum are also obtained

    Bioinformatics-Based Identification of a circRNA-miRNA-mRNA Axis in Esophageal Squamous Cell Carcinomas

    No full text
    Background. Esophageal squamous cell carcinoma (ESCC) has a poor prognosis due to the lack of early disease symptoms. Using bioinformatics tools, this study aimed to discover differentially expressed nonprotein-coding RNAs and genes with potential prognostic relevance in ESCC. Methods. Two microRNAs (miRNAs) and one circular RNA (circRNA) microarray datasets were downloaded from the Gene Expression Omnibus (GEO) database. Differential expression of miRNAs (DEMs) and circRNAs (DECs) was, respectively, identified in ESCC tissue and compared to adjacent healthy tissue. Further analysis was performed using the miRNA microarray datasets, where miRTarBase was used to predict which messenger RNAs (mRNAs) was present. This was followed by protein-protein interaction (PPI) network, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Ontology (GO) analyses. Moreover, cytoHubba and UALCAN were used to predict the important nodes and perform patient survival analysis, respectively. The miRNA-associated circRNAs were predicted using the ENCORI website. The interaction between DECs and the predicted circRNAs was also determined. A circRNA-miRNA-mRNA axis was constructed. Results. Associated with RAP1B and circ_0052867, two miRNAs (miR-133b and miR-139-5p) were identified as being differentially expressed and downregulated across the two datasets. Finally, the circ_0052867/miR-139-5p/RAP1B regulatory axis was established. Conclusion. This study provides support for the possible mechanisms of disease progression in ESCC

    Current Progress of CAR-NK Therapy in Cancer Treatment

    No full text
    CD8+ T cells and natural killer (NK) cells eliminate target cells through the release of lytic granules and Fas ligand (FasL)-induced target cell apoptosis. The introduction of chimeric antigen receptor (CAR) makes these two types of cells selective and effective in killing cancer cells. The success of CAR-T therapy in the treatment of acute lymphoblastic leukemia (ALL) and other types of blood cancers proved that the immunotherapy is an effective approach in fighting against cancers, yet adverse effects, such as graft versus host disease (GvHD) and cytokine release syndrome (CRS), cannot be ignored for the CAR-T therapy. CAR-NK therapy, then, has its advantage in lacking these adverse effects and works as effective as CAR-T in terms of killing. Despite these, NK cells are known to be hard to transduce, expand in vitro, and sustain shorter in vivo comparing to infiltrated T cells. Moreover, CAR-NK therapy faces challenges as CAR-T therapy does, e.g., the time, the cost, and the potential biohazard due to the use of animal-derived products. Thus, enormous efforts are needed to develop safe, effective, and large-scalable protocols for obtaining CAR-NK cells. Here, we reviewed current progress of CAR-NK therapy, including its biological properties, CAR compositions, preparation of CAR-NK cells, and clinical progresses. We also discussed safety issues raised from genetic engineering. We hope this review is instructive to the research community and a broad range of readers

    Short-Term Effects of Prosocial Video Games on Aggression: An Event-Related Potential Study

    Get PDF
    Previous research has shown that exposure to violent video games increases aggression, whereas exposure to prosocial video games can reduce aggressive behavior. However, little is known about the neural correlates of these behavioral effects. This work is the first to investigate the electrophysiological features of the relationship between playing a prosocial video game and inhibition of aggressive behavior. Forty-nine subjects played either a prosocial or a neutral video game for 20 minutes, then participated in an event-related potential (ERP) experiment based on an oddball paradigm and designed to test electrophysiological responses to prosocial and violent words. Finally, subjects completed a competitive reaction time task (CRTT), which is based on Taylor’s Aggression Paradigm and measures both reaction time and noise intensity preference as indices of aggressive behavior. The results show that the prosocial video game group (compared to the neutral video game group) displayed smaller P300 amplitudes, were more accurate in distinguishing violent words, and were less aggressive as evaluated by the CRTT (noise intensity preference). A mediation analysis shows that the P300 amplitude evoked by violent words partially mediates the relationship between type of video game and subsequent aggressive behavior. The results support theories based on the General Learning Model. We provide converging behavioral and neural evidence that exposure to prosocial media may reduce aggression
    corecore