175 research outputs found

    Addressing Unison and Uniqueness of Reliability and Safety for Better Integration

    Get PDF
    For a long time, both in theory and in practice, safety and reliability have not been clearly differentiated, which leads to confusion, inefficiency, and sometime counter-productive practices in executing each of these two disciplines. It is imperative to address the uniqueness and the unison of these two disciplines to help both disciplines become more effective and to promote a better integration of the two for enhancing safety and reliability in our products as an overall objective. There are two purposes of this paper. First, it will investigate the uniqueness and unison of each discipline and discuss the interrelationship between the two for awareness and clarification. Second, after clearly understanding the unique roles and interrelationship between the two in a product design and development life cycle, we offer suggestions to enhance the disciplines with distinguished and focused roles, to better integrate the two, and to improve unique sets of skills and tools of reliability and safety processes. From the uniqueness aspect, the paper identifies and discusses the respective uniqueness of reliability and safety from their roles, accountability, nature of requirements, technical scopes, detailed technical approaches, and analysis boundaries. It is misleading to equate unreliable to unsafe, since a safety hazard may or may not be related to the component, sub-system, or system functions, which are primarily what reliability addresses. Similarly, failing-to-function may or may not lead to hazard events. Examples will be given in the paper from aerospace, defense, and consumer products to illustrate the uniqueness and differences between reliability and safety. From the unison aspect, the paper discusses what the commonalities between reliability and safety are, and how these two disciplines are linked, integrated, and supplemented with each other to accomplish the customer requirements and product goals. In addition to understanding the uniqueness in reliability and safety, a better understanding of unison and commonalities will further help in understanding the interaction between reliability and safety. This paper discusses the unison and uniqueness of reliability and safety. It presents some suggestions for better integration of the two disciplines in terms of technical approaches, tools, techniques, and skills to enhance the role of reliability and safety in supporting a product design and development life cycle. The paper also discusses eliminating the redundant effort and minimizing the overlap of reliability and safety analyses for an efficient implementation of the two disciplines

    Pluralistic Aging Diffusion Autoencoder

    Full text link
    Face aging is an ill-posed problem because multiple plausible aging patterns may correspond to a given input. Most existing methods often produce one deterministic estimation. This paper proposes a novel CLIP-driven Pluralistic Aging Diffusion Autoencoder (PADA) to enhance the diversity of aging patterns. First, we employ diffusion models to generate diverse low-level aging details via a sequential denoising reverse process. Second, we present Probabilistic Aging Embedding (PAE) to capture diverse high-level aging patterns, which represents age information as probabilistic distributions in the common CLIP latent space. A text-guided KL-divergence loss is designed to guide this learning. Our method can achieve pluralistic face aging conditioned on open-world aging texts and arbitrary unseen face images. Qualitative and quantitative experiments demonstrate that our method can generate more diverse and high-quality plausible aging results.Comment: Accepted by ICCV 202

    Developing and Activated T Cell Survival Depends on Differential Signaling Pathways to Regulate Anti-Apoptotic Bcl-xL

    Get PDF
    Survival of T cells in both the central and peripheral immune system determines its ultimate function in the regulation of immune responses. In the thymus, developing T cells undergo positive and negative selection to generate a T cell repertoire that responds to foreign, but not self, antigens. During T cell development, the T cell receptor α chain is rearranged. However, the first round of rearrangement may fail, which triggers another round of α chain rearrangement until either successful positive selection or cell death occurs. Thus, the lifespan of double positive (CD4+CD8+; DP) thymocytes determines how many rounds of α chain rearrangement can be carried out and influences the likelihood of completing positive selection. The anti-apoptotic protein Bcl-xL is the ultimate effector regulating the survival of CD4+CD8+ thymocytes subject to the selection process, and the deletion of Bcl-xL leads to premature apoptosis of thymocytes prior to the completion of the developmental process. In addition to its critical function in the thymus, Bcl-xL also regulates the survival of peripheral T cells. Upon engagement with antigens, T cells are activated and differentiated into effectors. Activated T cells upregulate Bcl-xL to enhance their own survival. Bcl-xL-mediated survival is required for the generation of effectors that carry out the actual immune responses. In the absence of Bcl-xL, mature T cells undergo apoptosis prior to the completion of the differentiation process to become effector cells. Therefore, Bcl-xL ensures the survival of both developing and peripheral T cells, which is essential for a functional immune system

    Reliability and Probabilistic Risk Assessment - How They Play Together

    Get PDF
    The objective of this presentation is to discuss the PRA process and the reliability engineering discipline, their differences and similarities, and how they are used as complimentary analyses to support design and flight decisions

    A two-amino-acid substitution in the transcription factor RORÎłt disrupts its function in T_H17 differentiation but not in thymocyte development

    Get PDF
    The transcription factor RORγt regulates differentiation of the T_H17 subset of helper T cells, thymic T cell development and lymph-node genesis. Although elimination of RORγt prevents T_H17 cell–mediated experimental autoimmune encephalomyelitis (EAE), it also disrupts thymocyte development, which could lead to lethal thymic lymphoma. Here we identified a two-amino-acid substitution in RORγt (RORγt^M) that 'preferentially' disrupted T_H17 differentiation but not thymocyte development. Mice expressing RORγt^M were resistant to EAE associated with defective T_H17 differentiation but maintained normal thymocyte development and normal lymph-node genesis, except for Peyer's patches. RORγt^M showed less ubiquitination at Lys69 that was selectively required for T_H17 differentiation but not T cell development. This study will inform the development of treatments that selectively target T_H17 cell–mediated autoimmunity but do not affect thymocyte development or induce lymphoma

    Discovery of a Redox Thiol Switch: Implications for Cellular Energy Metabolism

    Get PDF
    The redox-based modifications of cysteine residues in proteins regulate their function in many biological processes. The gas molecule H2S has been shown to persulfidate redox sensitive cysteine residues resulting in an H2S-modified proteome known as the sulfhydrome. Tandem Mass Tags (TMT) multiplexing strategies for large-scale proteomic analyses have become increasingly prevalent in detecting cysteine modifications. Here we developed a TMT-based proteomics approach for selectively trapping and tagging cysteine persulfides in the cellular proteomes. We revealed the natural protein sulfhydrome of two human cell lines, and identified insulin as a novel substrate in pancreatic beta cells. Moreover, we showed that under oxidative stress conditions, increased H2S can target enzymes involved in energy metabolism by switching specific cysteine modifications to persulfides. Specifically, we discovered a Redox Thiol Switch, from protein S-glutathioinylation to S-persulfidation (RTSGS). We propose that the RTSGS from S-glutathioinylation to S-persulfidation is a potential mechanism to fine tune cellular energy metabolism in response to different levels of oxidative stress
    • …
    corecore