31 research outputs found

    Bacterial Profile and Antibiotic Resistance in Patients with Diabetic Foot Ulcer in Guangzhou, Southern China: Focus on the Differences among Different Wagner’s Grades, IDSA/IWGDF Grades, and Ulcer Types

    Get PDF
    Objective. To understand the bacterial profile and antibiotic resistance patterns in diabetic foot infection (DFI) in different Wagner’s grades, IDSA/IWGDF grades, and different ulcer types in Guangzhou, in order to provide more detailed suggestion to the clinician about the empirical antibiotic choice. Methods. 207 bacteria were collected from 117 DFIs in Sun Yat-sen Memorial Hospital from Jan.1, 2010, to Dec.31, 2015. The clinical data and microbial information were analyzed. Results. The proportion of Gram-negative bacteria (GNB) was higher than Gram-positive bacteria (GPB) (54.1% versus 45.9%), in which Enterobacteriaceae (73.2%) and Staphylococcus (65.2%) were predominant, respectively. With an increasing of Wagner’s grades and IDSA/IWGDF grades, the proportion of GNB bacterial infection, especially Pseudomonas, was increased. Neuro-ischemic ulcer (N-IFU) was more susceptible to GNB infection. Furthermore, with the aggravation of the wound and infection, the antibiotic resistance rates were obviously increased. GPB isolated in ischemic foot ulcer (IFU) showed more resistance than the N-IFU, while GNB isolates were on the opposite. Conclusions. Different bacterial profiles and antibiotic sensitivity were found in different DFU grades and types. Clinician should try to stay updated in antibiotic resistance pattern of common pathogens in their area. This paper provided them the detailed information in this region

    Role of cytokines in host defense against Staphylococcus aureus skin infection

    No full text
    Wound infection caused by Staphylococcus aureus (S. aureus) is a critical clinical problem due to long hospitalization times, significant morbidity and mortality, as well as considerable medical resource consumption. With the emergence of methicillinresistant S. aureus (MRSA) strains, current antibiotic treatments are becoming ineffective in combatting S. aureus infection. Thus, a novel therapeutic strategy is required. Recent studies discovered that several cytokines in the infected wound area play protective roles against S. aureus infection. This review summarizes recent discoveries regarding the role of cytokines-mediated responses in host defense against S. aureus skin infection, and discusses their implications for future immunotherapy and vaccine development

    Machine-Learning Prediction of Oral Drug-Induced Liver Injury (DILI) via Multiple Features and Endpoints

    No full text
    Drug discovery is a costly process which usually takes more than 10 years and billions of dollars for one successful drug to enter the market. Despite all the safety tests, drugs may still cause adverse reactions and be restricted in use or even withdrawn from the market. Drug-induced liver injury (DILI) is one of the major adverse drug reactions, and computational models may be used to predict and reduce it. To assess the computational prediction performance of DILI, we curated DILI endpoints from three databases and prepared drug features including chemical descriptors, therapeutic classifications, gene expressions, and binding proteins. We trained machine-learning models to predict the various DILI endpoints using different drug features. Using the optimal feature sets, the top-performing models obtained areas under the receiver operating characteristic curve (AUC) around 0.8 for some DILI endpoints. We found that some features, including therapeutic classifications and proteins, have good prediction performance towards DILI. We also discovered that the severity of DILI endpoints as well as the selection of negative samples may significantly affect the prediction results. Overall, our study provided a comprehensive collection, curation, and prediction of DILI endpoints using various drug features, which may help the drug researchers to better understand and prevent DILI during the drug discovery process

    Stand-Alone Inter-Frame Attention in Video Models

    Full text link
    Motion, as the uniqueness of a video, has been critical to the development of video understanding models. Modern deep learning models leverage motion by either executing spatio-temporal 3D convolutions, factorizing 3D convolutions into spatial and temporal convolutions separately, or computing self-attention along temporal dimension. The implicit assumption behind such successes is that the feature maps across consecutive frames can be nicely aggregated. Nevertheless, the assumption may not always hold especially for the regions with large deformation. In this paper, we present a new recipe of inter-frame attention block, namely Stand-alone Inter-Frame Attention (SIFA), that novelly delves into the deformation across frames to estimate local self-attention on each spatial location. Technically, SIFA remoulds the deformable design via re-scaling the offset predictions by the difference between two frames. Taking each spatial location in the current frame as the query, the locally deformable neighbors in the next frame are regarded as the keys/values. Then, SIFA measures the similarity between query and keys as stand-alone attention to weighted average the values for temporal aggregation. We further plug SIFA block into ConvNets and Vision Transformer, respectively, to devise SIFA-Net and SIFA-Transformer. Extensive experiments conducted on four video datasets demonstrate the superiority of SIFA-Net and SIFA-Transformer as stronger backbones. More remarkably, SIFA-Transformer achieves an accuracy of 83.1% on Kinetics-400 dataset. Source code is available at \url{https://github.com/FuchenUSTC/SIFA}.Comment: CVPR 2022; Code is publicly available at: https://github.com/FuchenUSTC/SIF

    Uniform, Stable, and Efficient Planar-Heterojunction Perovskite Solar Cells by Facile Low-Pressure Chemical Vapor Deposition under Fully Open-Air Conditions

    No full text
    Recently, hybrid perovskite solar cells (PSCs) have attracted extensive attention due to their high efficiency and simple preparing process. Herein, a facile low-pressure chemical vapor deposition (LPCVD) technology is first developed to fabricate PSCs, which can effectively reduce the over-rapid intercalating reaction rate and easily overcome this blocking issue during the solution process. As a result, the prepared uniform perovskite films exhibit good crystallization, strong absorption, and long carrier diffusion length. More strikingly, CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> absorbers by LPCVD demonstrate excellent moisture-resistant feature even under laser illumination and high-temperature conditions, which indicates that our proprietary method is very suitable for the future low-cost, nonvacuum production of the new generation photovoltaic devices. Finally, high efficiency of 12.73% is successfully achieved under fully open-air conditions. To the best of our knowledge, this is the first report of efficient PSCs with such a high humidity above 60%

    Molecular epidemiology and virulence characteristics of Staphylococcus aureus nasal colonization in medical laboratory staff: comparison between microbiological and non-microbiological laboratories

    No full text
    Abstract Background Medical laboratory staff are a high-risk population for colonization of Staphylococcus aureus (S. aureus) due to direct and dense contact with the pathogens; however, there is limited information about this colonization. This study sought to determine the prevalence and molecular characteristics of nasal colonization by S. aureus in medical laboratory staff in Guangzhou, southern China, and to compare the differences between microbiological laboratory (MLS) and non-microbiological laboratory (NMLS) staff. Methods S. aureus colonization was assessed by nasal swab cultures from 434 subjects, including 130 MLSs and 304 NMLSs from 33 hospitals in Guangzhou. All S. aureus isolates underwent the antimicrobial susceptibility test, virulence gene detection and molecular typing. Results The overall prevalence of S. aureus carriage was 20.1% (87/434), which was higher in MLSs than in NMLSs (26.2% vs. 17.4%, P < 0.05), while the prevalence of Methicillin-resistant S. aureus (MRSA) was similar. Living with hospital staff was associated with S. aureus carriage. The majority of the isolates harboured various virulence genes, and those in MLSs appeared less resistant to antibiotics and more virulent than their counterparts. A total of 37 different spa types were detected; among these, t338, t437, t189 and t701 were the most frequently encountered types. T338 was the main spa type contributing to nasal colonization Methicillin-sensitive S. aureus (MSSA) (13.0%), and t437-SCCmec IV was predominant in MRSA isolates (40%). Conclusions These findings provide insight into the risk factors, molecular epidemiology and virulence gene profiles of S. aureus nasal carriage among the medical laboratory staff in Guangzhou

    Hydrostatin-SN1, a Sea Snake-Derived Bioactive Peptide, Reduces Inflammation in a Mouse Model of Acute Lung Injury

    No full text
    Snake venom has been used for centuries as a traditional Chinese medicine. Hydrostatin-SN1 (H-SN1), a bioactive peptide extracted from the Hydrophis cyanocinctus venom gland T7 phage display library, was reported to have the ability to reduce inflammation in a dextran sulfate sodium-induced murine colitis model. In this study, we sought to investigate the inhibitory potential of H-SN1 on inflammation in a murine model of lipopolysaccharide (LPS)-induced acute lung injury (ALI), and elucidate the anti-inflammatory mechanism in LPS-stimulated RAW 264.7 cells. In vivo, C57BL/6 male mice were intratracheally instilled with LPS or physiological saline with concurrent intraperitoneal injection of H-SN1 or saline alone. Lung histopathologic changes, lung wet-to-dry weight ratio, and myeloperoxidase activity in lung tissues were assessed. Total cell number, the protein concentration, and cytokine levels were determined in the bronchial alveolar lavage fluid. In vitro, RAW 264.7 cells were treated with various concentrations of H-SN1 for 2 h followed by incubation with or without 1 μg/ml LPS for 0.5 or 24 h. The mRNA expression of inflammatory cytokines was determined via RT-PCR and protein levels in the supernatants were measured via ELISA. Extracellular-signal related kinase 1/2 (ERK1/2) and nuclear factor-κB (NF-κB) pathways were analyzed via western blot. H-SN1 improved pulmonary edema status, decreased vascular permeability, suppressed pro-inflammatory cytokine production, and lessened lung morphological injury. H-SN1 also dose-dependently inhibited the mRNA expression and release of TNF-α, IL-6, and IL-1β in LPS-stimulated RAW 264.7 cells. Moreover, H-SN1 inhibited the LPS-induced phosphorylation of ERK1/2 and the nuclear translocation of NF-κB. Our results suggest that H-SN1 could attenuate LPS-induced ALI in mice, which is associated with the anti-inflammatory effect of H-SN1. The mechanism might involve inhibiting the production of inflammatory cytokines by, at least in part, interfering with the ERK1/2 and NF-κB signaling pathways

    Hydrostatin-SN1, a Sea Snake-Derived Bioactive Peptide, Reduces Inflammation in a Mouse Model of Acute Lung Injury

    No full text
    Snake venom has been used for centuries as a traditional Chinese medicine. Hydrostatin-SN1 (H-SN1), a bioactive peptide extracted from the Hydrophis cyanocinctus venom gland T7 phage display library, was reported to have the ability to reduce inflammation in a dextran sulfate sodium-induced murine colitis model. In this study, we sought to investigate the inhibitory potential of H-SN1 on inflammation in a murine model of lipopolysaccharide (LPS)-induced acute lung injury (ALI), and elucidate the anti-inflammatory mechanism in LPS-stimulated RAW 264.7 cells. In vivo, C57BL/6 male mice were intratracheally instilled with LPS or physiological saline with concurrent intraperitoneal injection of H-SN1 or saline alone. Lung histopathologic changes, lung wet-to-dry weight ratio, and myeloperoxidase activity in lung tissues were assessed. Total cell number, the protein concentration, and cytokine levels were determined in the bronchial alveolar lavage fluid. In vitro, RAW 264.7 cells were treated with various concentrations of H-SN1 for 2 h followed by incubation with or without 1 μg/ml LPS for 0.5 or 24 h. The mRNA expression of inflammatory cytokines was determined via RT-PCR and protein levels in the supernatants were measured via ELISA. Extracellular-signal related kinase 1/2 (ERK1/2) and nuclear factor-κB (NF-κB) pathways were analyzed via western blot. H-SN1 improved pulmonary edema status, decreased vascular permeability, suppressed pro-inflammatory cytokine production, and lessened lung morphological injury. H-SN1 also dose-dependently inhibited the mRNA expression and release of TNF-α, IL-6, and IL-1β in LPS-stimulated RAW 264.7 cells. Moreover, H-SN1 inhibited the LPS-induced phosphorylation of ERK1/2 and the nuclear translocation of NF-κB. Our results suggest that H-SN1 could attenuate LPS-induced ALI in mice, which is associated with the anti-inflammatory effect of H-SN1. The mechanism might involve inhibiting the production of inflammatory cytokines by, at least in part, interfering with the ERK1/2 and NF-κB signaling pathways
    corecore