114 research outputs found

    Learning noise-induced transitions by multi-scaling reservoir computing

    Full text link
    Noise is usually regarded as adversarial to extract the effective dynamics from time series, such that the conventional data-driven approaches usually aim at learning the dynamics by mitigating the noisy effect. However, noise can have a functional role of driving transitions between stable states underlying many natural and engineered stochastic dynamics. To capture such stochastic transitions from data, we find that leveraging a machine learning model, reservoir computing as a type of recurrent neural network, can learn noise-induced transitions. We develop a concise training protocol for tuning hyperparameters, with a focus on a pivotal hyperparameter controlling the time scale of the reservoir dynamics. The trained model generates accurate statistics of transition time and the number of transitions. The approach is applicable to a wide class of systems, including a bistable system under a double-well potential, with either white noise or colored noise. It is also aware of the asymmetry of the double-well potential, the rotational dynamics caused by non-detailed balance, and transitions in multi-stable systems. For the experimental data of protein folding, it learns the transition time between folded states, providing a possibility of predicting transition statistics from a small dataset. The results demonstrate the capability of machine-learning methods in capturing noise-induced phenomena

    SeCo: Exploring Sequence Supervision for Unsupervised Representation Learning

    Full text link
    A steady momentum of innovations and breakthroughs has convincingly pushed the limits of unsupervised image representation learning. Compared to static 2D images, video has one more dimension (time). The inherent supervision existing in such sequential structure offers a fertile ground for building unsupervised learning models. In this paper, we compose a trilogy of exploring the basic and generic supervision in the sequence from spatial, spatiotemporal and sequential perspectives. We materialize the supervisory signals through determining whether a pair of samples is from one frame or from one video, and whether a triplet of samples is in the correct temporal order. We uniquely regard the signals as the foundation in contrastive learning and derive a particular form named Sequence Contrastive Learning (SeCo). SeCo shows superior results under the linear protocol on action recognition (Kinetics), untrimmed activity recognition (ActivityNet) and object tracking (OTB-100). More remarkably, SeCo demonstrates considerable improvements over recent unsupervised pre-training techniques, and leads the accuracy by 2.96% and 6.47% against fully-supervised ImageNet pre-training in action recognition task on UCF101 and HMDB51, respectively. Source code is available at \url{https://github.com/YihengZhang-CV/SeCo-Sequence-Contrastive-Learning}.Comment: AAAI 2021; Code is publicly available at: https://github.com/YihengZhang-CV/SeCo-Sequence-Contrastive-Learnin

    Learning Spatio-Temporal Representation with Local and Global Diffusion

    Full text link
    Convolutional Neural Networks (CNN) have been regarded as a powerful class of models for visual recognition problems. Nevertheless, the convolutional filters in these networks are local operations while ignoring the large-range dependency. Such drawback becomes even worse particularly for video recognition, since video is an information-intensive media with complex temporal variations. In this paper, we present a novel framework to boost the spatio-temporal representation learning by Local and Global Diffusion (LGD). Specifically, we construct a novel neural network architecture that learns the local and global representations in parallel. The architecture is composed of LGD blocks, where each block updates local and global features by modeling the diffusions between these two representations. Diffusions effectively interact two aspects of information, i.e., localized and holistic, for more powerful way of representation learning. Furthermore, a kernelized classifier is introduced to combine the representations from two aspects for video recognition. Our LGD networks achieve clear improvements on the large-scale Kinetics-400 and Kinetics-600 video classification datasets against the best competitors by 3.5% and 0.7%. We further examine the generalization of both the global and local representations produced by our pre-trained LGD networks on four different benchmarks for video action recognition and spatio-temporal action detection tasks. Superior performances over several state-of-the-art techniques on these benchmarks are reported. Code is available at: https://github.com/ZhaofanQiu/local-and-global-diffusion-networks.Comment: CVPR 201
    • …
    corecore