31 research outputs found

    The succession of rhizosphere microbial community in the continuous cropping soil of tobacco

    Get PDF
    Introduction: Flue-cured tobacco is an important economic crop that is not tolerant of continuous cropping and can be influenced by planting soil conditions including rhizosphere microbial communities and soil physicochemical properties. The relationship between rhizosphere microbial communities and soil physicochemical properties under continuous cropping conditions is unclear.Methods: This study investigated the succession of rhizosphere microbial community in continuous tobacco cropping soil for 1, 3, 5, 8, 10, 15, and 30 years. The physicochemical properties of the soil were measured, high-throughput sequencing was performed on the rhizosphere microbial community, and correlation analysis was conducted.Results: The results suggested that continuous cropping could significantly enrich soil available nitrogen, available phosphorus, available potassium, and organic matter. Meanwhile, the alpha diversity of the bacterial community was significantly reduced with continuous cropping, indicating significant changes in the structure of bacterial and fungal communities. Based on linear discriminant analysis effect size (LEfSe), 173 bacterial and 75 fungal genera were identified with significant differences. The bacterial genera, Sphingomonas, Streptomyces, and Microvirga, were significantly positively correlated with continuous cropping years. The fungal genera, Tausonia, Solicocozyma, Pseudomycohila, and Fusarium, also showed significant positive correlation with continuous cropping years. Meanwhile, the fungal genera, Olpidium, Cephaliophora, and Cercophora, presented an opposite correlation. However, there are differences in the correlation between these bacterial and fungal genera related to continuous cropping years and other different soil physicochemical properties.Discussion: In summary, this work could provide a reference for soil management and scientific fertilization of tobacco under continuous cropping conditions

    Relationship between biofilm formation and antibiotic resistance of Klebsiella pneumoniae and updates on antibiofilm therapeutic strategies

    Get PDF
    Klebsiella pneumoniae is a Gram-negative bacterium within the Enterobacteriaceae family that can cause multiple systemic infections, such as respiratory, blood, liver abscesses and urinary systems. Antibiotic resistance is a global health threat and K. pneumoniae warrants special attention due to its resistance to most modern day antibiotics. Biofilm formation is a critical obstruction that enhances the antibiotic resistance of K. pneumoniae. However, knowledge on the molecular mechanisms of biofilm formation and its relation with antibiotic resistance in K. pneumoniae is limited. Understanding the molecular mechanisms of biofilm formation and its correlation with antibiotic resistance is crucial for providing insight for the design of new drugs to control and treat biofilm-related infections. In this review, we summarize recent advances in genes contributing to the biofilm formation of K. pneumoniae, new progress on the relationship between biofilm formation and antibiotic resistance, and new therapeutic strategies targeting biofilms. Finally, we discuss future research directions that target biofilm formation and antibiotic resistance of this priority pathogen

    A Temperature-Based Easy-Separable (TempEasy) 3D Hydrogel Coculture System

    No full text
    Interactions between different cell types are crucial for their behavior in tissues, but are rarely considered in 3D in vitro cell culture experiments. One reason is that such coculture experiments are sometimes difficult to perform in 3D or require specialized equipment or know-how. Here, a new 3D cell coculture system is introduced, TempEasy, which is readily applied in any cell culture lab. The matrix material is based on polyisocyanide hydrogels, which closely resemble the mechanical characteristics of the natural extracellular matrix. Gels with different gelation temperatures, seeded with different cells, are placed on top of each other to form an indirect coculture. Cooling reverses gelation, allowing cell harvesting from each layer separately, which benefits downstream analysis. To demonstrate the potential of TempEasy , human adipose stem cells (hADSCs) with vaginal epithelial fibroblasts are cocultured. The analysis of a 7-day coculture shows that hADSCs promote cell-cell interaction of fibroblasts, while fibroblasts promote proliferation and differentiation of hADSCs. TempEasy provides a straightforward operational platform for indirect cocultures of cells of different lineages in well-defined microenvironments

    Switching carbon metabolic flux for enhancing the production of sesquiterpene-based high-density biofuel precursor in Saccharomyces cerevisiae

    No full text
    Abstract Background Sesquiterpenes are designated as a large class of plant-derived natural active compounds, which have wide applications in industries of energy, food, cosmetics, medicine and agriculture. Neither plant extraction nor chemical synthesis can meet the massive market demands and sustainable development goals. Biosynthesis in microbial cell factories represents an eco-friendly and high-efficient way. Among several microorganisms, Saccharomyces cerevisiae exhibited the potential as a chassis for bioproduction of various sesquiterpenes due to its native mevalonate pathway. However, its inefficient nature limits biosynthesis of diverse sesquiterpenes at industrial grade. Results Herein, we exploited an artificial synthetic malonic acid-acetoacetyl-CoA (MAAC) metabolic pathway to switch central carbon metabolic flux for stable and efficient biosynthesis of sesquiterpene-based high-density biofuel precursor in S. cerevisiae. Through investigations at transcription and metabolism levels, we revealed that strains with rewired central metabolism can devote more sugars to β-caryophyllene production. By optimizing the MVA pathway, the yield of β-caryophyllene from YQ-4 was 25.8 mg/L, which was 3 times higher than that of the initial strain YQ-1. Strain YQ-7 was obtained by introducing malonic acid metabolic pathway. Combing the optimized flask fermentation process, the target production boosted by about 13-fold, to 328 mg/L compared to that in the strain YQ-4 without malonic acid metabolic pathway. Conclusion This designed MAAC pathway for sesquiterpene-based high-density biofuel precursor synthesis can provide an impressive cornerstone for achieving a sustainable production of renewable fuels

    The Two-component System RsrS-RsrR Regulates the Tetrathionate Intermediate Pathway for Thiosulfate Oxidation in Acidithiobacillus caldus

    Get PDF
    Acidithiobacillus caldus (A. caldus) is a common bioleaching bacterium that possesses a sophisticated and highly efficient inorganic sulfur compound metabolism network. Thiosulfate, a central intermediate in the sulfur metabolism network of A. caldus and other sulfur-oxidizing microorganisms, can be metabolized via the tetrathionate intermediate (S4I) pathway catalyzed by thiosulfate:quinol oxidoreductase (Tqo or DoxDA) and tetrathionate hydrolase (TetH). In A. caldus, there is an additional two-component system called RsrS-RsrR. Since rsrS and rsrR are arranged as an operon with doxDA and tetH in the genome, we suggest that the regulation of the S4I pathway may occur via the RsrS-RsrR system. To examine the regulatory role of the two-component system RsrS-RsrR on the S4I pathway, ΔrsrR and ΔrsrS strains were constructed in A. caldus using a newly developed markerless gene knockout method. Transcriptional analysis of the tetH cluster in the wild type and mutant strains revealed positive regulation of the S4I pathway by the RsrS-RsrR system. A 19bp inverted repeat sequence (IRS, AACACCTGTTACACCTGTT) located upstream of the tetH promoter was identified as the binding site for RsrR by using electrophoretic mobility shift assays (EMSAs) in vitro and promoter-probe vectors in vivo. In addition, ΔrsrR and ΔrsrS strains cultivated in K2S4O6- medium exhibited significant growth differences when compared with the wild type. Transcriptional analysis indicated that the absence of rsrS or rsrR had different effects on the expression of genes involved in sulfur metabolism and signaling systems. Finally, a model of tetrathionate sensing by RsrS, signal transduction via RsrR, and transcriptional activation of tetH-doxDA was proposed to provide insights towards the understanding of sulfur metabolism in A. caldus. This study also provided a powerful genetic tool for studies in A. caldus

    Discovery of a Strongly-Interrelated Gene Network in Corals under Constant Darkness by Correlation Analysis after Wavelet Transform on Complex Network Model

    No full text
    <div><p>Coral reefs occupy a relatively small portion of sea area, yet serve as a crucial source of biodiversity by establishing harmonious ecosystems with marine plants and animals. Previous researches mainly focused on screening several key genes induced by stress. Here we proposed a novel method—correlation analysis after wavelet transform of complex network model, to explore the effect of light on gene expression in the coral <i>Acropora millepora</i> based on microarray data. In this method, wavelet transform and the conception of complex network were adopted, and 50 key genes with large differences were finally captured, including both annotated genes and novel genes without accurate annotation. These results shed light on our understanding of coral's response toward light changes and the genome-wide interaction among genes under the control of biorhythm, and hence help us to better protect the coral reef ecosystems. Further studies are needed to explore how functional connections are related to structural connections, and how connectivity arises from the interactions within and between different systems. The method introduced in this study for analyzing microarray data will allow researchers to explore genome-wide interaction network with their own dataset and understand the relevant biological processes.</p></div
    corecore