98,493 research outputs found

    Position-dependent shear-induced austenite-martensite transformation in double-notched TRIP and dual-phase steel samples

    Get PDF
    While earlier studies on transformation-induced-plasticity (TRIP) steels focused on the determination of the austenite-to-martensite decomposition in uniform deformation or thermal fields, the current research focuses on the determination of the local retained austenite-to-martensite transformation behaviour in an inhomogeneous yet carefully controlled shear-loaded region of double-notched TRIP and dual-phase (DP) steel samples. A detailed powder analysis has been performed to simultaneously monitor the evolution of the phase fraction and the changes in average carbon concentration of metastable austenite together with the local strain components in the constituent phases as a function of the macroscopic stress and location with respect to the shear band. The metastable retained austenite shows a mechanically induced martensitic transformation in the localized shear zone, which is accompanied by an increase in average carbon concentration of the remaining austenite due to a preferred transformation of the austenite grains with the lowest carbon concentration. At the later deformation stages the geometry of the shear test samples results in the development of an additional tensile component. The experimental strain field within the probed sample area is in good agreement with finite element calculations. The strain development observed in the low-alloyed TRIP steel with metastable austenite is compared with that of steels with the same chemical composition containing either no austenite (a DP grade) or stable retained austenite (a TRIP grade produced at a long bainitic holding time). The transformation of metastable austenite under shear is a complex interplay between the local microstructure and the evolving strain fields

    Spin-Wave Spectrum in `Single-Domain' Magnetic Ground State of Triangular Lattice Antiferromagnet CuFeO2

    Full text link
    By means of neutron scattering measurements, we have investigated spin-wave excitation in a collinear four-sublattice (4SL) magnetic ground state of a triangular lattice antiferromagnet CuFeO2, which has been of recent interest as a strongly frustrated magnet, a spin-lattice coupled system and a multiferroic. To avoid mixing of spin-wave spectrum from magnetic domains having three different orientations reflecting trigonal symmetry of the crystal structure, we have applied uniaxial pressure on [1-10] direction of a single crystal CuFeO2. By elastic neutron scattering measurements, we have found that only 10 MPa of the uniaxial pressure results in almost 'single domain' state in the 4SL phase. We have thus performed inelastic neutron scattering measurements using the single domain sample, and have identified two distinct spin- wave branches. The dispersion relation of the upper spin-wave branch cannot be explained by the previous theoretical model [R. S. Fishman: J. Appl. Phys. 103 (2008) 07B109]. This implies the importance of the lattice degree of freedom in the spin-wave excitation in this system, because the previous calculation neglected the effect of the spin-driven lattice distortion in the 4SL phase. We have also discussed relationship between the present results and the recently discovered "electromagnon" excitation.Comment: 5 pages, 3 figures, accepted for publication in J. Phys. Soc. Jp

    Exploring the assortativity-clustering space of a network's degree sequence

    Full text link
    Nowadays there is a multitude of measures designed to capture different aspects of network structure. To be able to say if the structure of certain network is expected or not, one needs a reference model (null model). One frequently used null model is the ensemble of graphs with the same set of degrees as the original network. In this paper we argue that this ensemble can be more than just a null model -- it also carries information about the original network and factors that affect its evolution. By mapping out this ensemble in the space of some low-level network structure -- in our case those measured by the assortativity and clustering coefficients -- one can for example study how close to the valid region of the parameter space the observed networks are. Such analysis suggests which quantities are actively optimized during the evolution of the network. We use four very different biological networks to exemplify our method. Among other things, we find that high clustering might be a force in the evolution of protein interaction networks. We also find that all four networks are conspicuously robust to both random errors and targeted attacks

    Magnitude bias of microlensed sources towards the Large Magellanic Cloud

    Get PDF
    There are lines of evidence suggesting that some of the observed microlensing events in the direction of the Large Magellanic Cloud (LMC) are caused by ordinary star lenses as opposed to dark Machos in the Galactic halo. Efficient lensing by ordinary stars generally requires the presence of one or more additional concentrations of stars along the line of sight to the LMC disk. If such a population behind the LMC disk exists, then the source stars (for lensing by LMC disk objects) will be drawn preferentially from the background population and will show systematic differences from LMC field stars. One such difference is that the (lensed) source stars will be farther away than the average LMC field stars, and this should be reflected in their apparent baseline magnitudes. We focus on red clump stars: these should appear in the color-magnitude diagram at a few tenths of a magnitude fainter than the field red clump. Suggestively, one of the two near-clump confirmed events, MACHO-LMC-1, is a few tenths of magnitude fainter than the clump.Comment: To appear in ApJ Letters. Shortened to match the accepted version, 8 pages plus 1 ps figur

    Intrinsic Percolative Superconductivity in Heavily Overdoped High Temperature Superconductors

    Full text link
    Magnetic measurements on heavily overdoped La2−xSrxCuO4La_{2-x}Sr_xCuO_4, Tl2Ba2CuO6Tl_2Ba_2CuO_6, Bi2Sr2CuO6Bi_2Sr_2CuO_6 and Bi2Sr2CaCu2O8Bi_2Sr_2CaCu_2O_8 single crystals reveal a new type magnetization hysteresis loops characterized by the vanishing of usual central peak near zero field. Since this effect has been observed in various systems with very different structural details, it reflects probably a generic behavior for all high temperature superconductors. This easy penetration of magnetic flux can be understood in the picture of percolative superconductivity due to the inhomogeneous electronic state in heavily overdoped regime.Comment: 4 pages, 5 figure

    Interobserver Reliability in Describing Radiographic Lung Changes After Stereotactic Body Radiation Therapy

    Get PDF
    Purpose Radiographic lung changes after stereotactic body radiation therapy (SBRT) vary widely between patients. Standardized descriptions of acute (≤6 months after treatment) and late (\u3e6 months after treatment) benign lung changes have been proposed but the reliable application of these classification systems has not been demonstrated. Herein, we examine the interobserver reliability of classifying acute and late lung changes after SBRT. Methods and materials A total of 280 follow-up computed tomography scans at 3, 6, and 12 months post-treatment were analyzed in 100 patients undergoing thoracic SBRT. Standardized descriptions of acute lung changes (3- and 6-month scans) include diffuse consolidation, patchy consolidation and ground glass opacity (GGO), diffuse GGO, patchy GGO, and no change. Late lung change classifications (12-month scans) include modified conventional pattern, mass-like pattern, scar-like pattern, and no change. Five physicians scored the images independently in a blinded fashion. Fleiss\u27 kappa scores quantified the interobserver agreement. Results The Kappa scores were 0.30 at 3 months, 0.20 at 6 months, and 0.25 at 12 months. The proportion of patients in each category at 3 and 6 months was as follows: Diffuse consolidation 11% and 21%; patchy consolidation and GGO 15% and 28%; diffuse GGO 10% and 11%; patchy GGO 15% and 15%; and no change 49% and 25%, respectively. The percentage of patients in each category at 12 months was as follows: Modified conventional 46%; mass-like 16%; scar-like 26%; and no change 12%. Uniform scoring between the observers occurred in 26, 8, and 14 cases at 3, 6, and 12 months, respectively. Conclusions Interobserver reliability scores indicate a fair agreement to classify radiographic lung changes after SBRT. Qualitative descriptions are insufficient to categorize these findings because most patient scans do not fit clearly into a single classification. Categorization at 6 months may be the most difficult because late and acute lung changes can arise at that time
    • …
    corecore