47,976 research outputs found

    Impact of pairing correlations on the orientation of the nuclear

    Full text link
    For the first time, the tilted axis cranking covariant density functional theory with pairing correlations has been formulated and implemented in a fully self-consistent and microscopic way to investigate the evolution of the spin axis and the pairing effects in rotating triaxial nuclei. The measured energy spectrum and transition probabilities for the Nd-135 yrast band are reproduced well without any ad hoc renormalization factors when pairing effects are taken into account. A transition from collective to chiral rotation has been demonstrated. It is found that pairing correlations introduce additional admixtures in the single-particle orbitals, and, thus, influence the structure of tilted axis rotating nuclei by reducing the magnitude of the proton and neutron angular momenta while merging their direction.Comment: 13 pages, 5 figure

    Role of nucleon resonance excitation in ϕ\phi meson photoproduction

    Full text link
    The resonance effects are investigated in the ϕ\phi meson photoproduction near threshold through a quark model approach with an effective Lagrangian. The diffractive contribution is consistently estimated by the {\it t}-channel Pomeron exchange. Another non-diffractive process, {\it t}-channel π0\pi^0 exchange is also included. The numerical result shows that the Pomeron exchange plays dominant role in the ϕ\phi meson photoproduction, while the cross sections of the non-diffractive processes, i.e. {\it s}- and {\it u}-channel excitations, and {\it t}-channel π0\pi^0 exchange, are quite small. In the polarization observables, we find that large asymmetries are produced in the backward direction by the interferences from the {\it s}- and {\it u}-channel resonances, while in the forward direction, only very small asymmetries are generated. Meanwhile, we find that the effects from the π0\pi^0 exchange are generally negligible.Comment: Contribution to "2nd International Conference on Perspectives in Hadronic Physics", Trieste, ICTP, 10-14 May 1999, to appear in Few-body Syste

    Progress on tilted axis cranking covariant density functional theory for nuclear magnetic and antimagnetic rotation

    Full text link
    Magnetic rotation and antimagnetic rotation are exotic rotational phenomena observed in weakly deformed or near-spherical nuclei, which are respectivelyinterpreted in terms of the shears mecha-nism and two shearslike mechanism. Since their observations, magnetic rotation and antimagnetic rotation phenomena have been mainly investigated in the framework of tilted axis cranking based on the pairing plus quadrupole model. For the last decades, the covariant density functional theory and its extension have been proved to be successful in describing series of nuclear ground-states and excited states properties, including the binding energies, radii, single-particle spectra, resonance states, halo phenomena, magnetic moments, magnetic rotation, low-lying excitations, shape phase transitions, collective rotation and vibrations, etc. This review will mainly focus on the tilted axis cranking covariant density functional theory and its application for the magnetic rotation and antimagnetic rotation phenomena.Comment: 53 pages, 19 figure
    corecore