126,993 research outputs found

    Synthetic vision and emotion calculation in intelligent virtual human modeling

    Get PDF
    The virtual human technique already can provide vivid and believable human behaviour in more and more scenarios. Virtual humans are expected to replace real humans in hazardous situations to undertake tests and feed back valuable information. This paper will introduce a virtual human with a novel collision-based synthetic vision, short-term memory model and a capability to implement the emotion calculation and decision making. The virtual character based on this model can ‘see’ what is in his field of view (FOV) and remember those objects. After that, a group of affective computing equations have been introduced. These equations have been implemented into a proposed emotion calculation process to enlighten emotion for virtual intelligent huma

    Trapping radioactive ^{82}Rb in an optical dipole trap and evidence of spontaneous spin polarization

    Full text link
    Optical trapping of selected species of radioactive atoms has great potential in precision measurements for testing fundamental physics such as EDM, PNC and parity violating beta-decay asymmetry correlation coefficients. We report trapping of 10^4 radioactive ^{82}Rb atoms (t_{1/2}=75 s) with a trap lifetime of ~55 seconds in an optical dipole trap. Transfer efficiency from the magneto-optical trap was ~14%. We further report the evidence of spontaneous spin polarization of the atoms in optical dipole trap loading. This advancement is an important step towards a new generation of precision J-beta correlations measurements with polarized ^{82}Rb atoms.Comment: 4 pages, 4 figure

    Magnon squeezing in an antiferromagnet: reducing the spin noise below the standard quantum limit

    Get PDF
    At absolute zero temperature, thermal noise vanishes when a physical system is in its ground state, but quantum noise remains as a fundamental limit to the accuracy of experimental measurements. Such a limitation, however, can be mitigated by the formation of squeezed states. Quantum mechanically, a squeezed state is a time-varying superposition of states for which the noise of a particular observable is reduced below that of the ground state at certain times. Quantum squeezing has been achieved for a variety of systems, including the electromagnetic field, atomic vibrations in solids and molecules, and atomic spins, but not so far for magnetic systems. Here we report on an experimental demonstration of spin wave (i.e., magnon) squeezing. Our method uses femtosecond optical pulses to generate correlations involving pairs of magnons in an antiferromagnetic insulator, MnF2. These correlations lead to quantum squeezing in which the fluctuations of the magnetization of a crystallographic unit cell vary periodically in time and are reduced below that of the ground state quantum noise. The mechanism responsible for this squeezing is stimulated second order Raman scattering by magnon pairs. Such squeezed states have important ramifications in the emerging fields of spintronics and quantum computing involving magnetic spin states or the spin-orbit coupling mechanism

    A parity-breaking electronic nematic phase transition in the spin-orbit coupled metal Cd2_2Re2_2O7_7

    Get PDF
    Strong electron interactions can drive metallic systems toward a variety of well-known symmetry-broken phases, but the instabilities of correlated metals with strong spin-orbit coupling have only recently begun to be explored. We uncovered a multipolar nematic phase of matter in the metallic pyrochlore Cd2_2Re2_2O7_7 using spatially resolved second-harmonic optical anisotropy measurements. Like previously discovered electronic nematic phases, this multipolar phase spontaneously breaks rotational symmetry while preserving translational invariance. However, it has the distinguishing property of being odd under spatial inversion, which is allowed only in the presence of spin-orbit coupling. By examining the critical behavior of the multipolar nematic order parameter, we show that it drives the thermal phase transition near 200 kelvin in Cd2_2Re2_2O7_7 and induces a parity-breaking lattice distortion as a secondary order.Comment: 9 pages main text, 4 figures, 10 pages supplementary informatio
    corecore