11 research outputs found

    The herb-ingredient-target-drug network for SWT.

    No full text
    <p>“PA”, “AS”, “RP”, “LC” represent “Radix Paeoniae Alba”, “Radix Angelicae Sinensis”, “Radix Rehmanniae Praeparata” and “Rhizoma Ligustici Chuanxiong” respectively. “Drug-4”, “Drug-5”, “Drug-6”,..., “Drug-41” represent drugs from “No. 4” to “No. 41” in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0072334#pone.0072334.s005" target="_blank">Table S5</a> respectively.</p

    Hydrodynamics and Mass-Transfer Analysis of a Distillation Ripple Tray by Computational Fluid Dynamics Simulation

    No full text
    A 3D two-phase computational fluid dynamics model in the Eulerian–Eulerian framework was developed to predict the hydrodynamics, mass-transfer behaviors, and tray efficiency of dual-flow trays: ripple trays. Interaction between the two phases occurs via interphase momentum and mass transfer. Mass-transfer coefficients were estimated using the Higbie penetration theory model. The simulated results were compared with the experimental data obtained from distillation of cyclohexane and <i>n</i>-heptane at total reflux. The results show that vapor and liquid flow countercurrently through the tray holes and four main hydrodynamic regimes are distinguished at different vapor/liquid loadings (<i>F</i><sub>s</sub> factor). It was found that the mass transfer of the spray zone above the froth was also significant, especially at lower loadings. In addition, the results indicated that the efficiency of a ripple tray was a strong function of the open hole area and <i>F</i><sub>s</sub> factor

    Ferrocene-Based Antioxidant Self-Healing Hydrogel via the Biginelli Reaction for Wound Healing

    No full text
    The development of antioxidant wound dressings to remove excessive free radicals around wounds is essential for wound healing. In this study, we developed an efficient strategy to prepare antioxidant self-healing hydrogels as wound dressings by combining multicomponent reactions (MCRs) and postpolymerization modification. A polymer containing ferrocene and phenylboronic acid groups was developed via the Biginelli reaction, followed by efficient modification. This polymer is antioxidant due to its ferrocene moieties and can rapidly cross-link poly(vinyl alcohol) to realize an antioxidant self-healing hydrogel through dynamic borate ester linkages. This hydrogel has low cytotoxicity and is biocompatible. In in vivo experiments, this hydrogel is superior to existing clinical dressings in promoting wound healing. This study demonstrates the value of the Biginelli reaction in exploring biomaterials, potentially offering insights into the design of other multifunctional polymers and related materials using different MCRs

    Interface Engineering of Hollow CoO/Co<sub>4</sub>S<sub>3</sub>@CoO/Co<sub>4</sub>S<sub>3</sub> Heterojunction for Highly Stable and Efficient Electrocatalytic Overall Water Splitting

    No full text
    The key to improve the performance of electrochemically water splitting and simplify the entire system is to develop a dual-functional catalyst, which can be applied to catalyze the process of HER and OER. Therefore, we synthesized a novel hollow CoO/Co4S3@CoO/Co4S3 heterojunction with a core–shell structure as an excellent dual-functional catalyst. This sample is composed of an outer hollow CoO/Co4S3 cubic thin shell and an inner hollow CoO/Co4S3 sphere, and it can provide abundant catalytic active sites while effectively promoting the flow of reactants, products, and electrolytes. Meanwhile, the O–Co–S bond in the heterojunction interface can promote both the CoO active site in OER and theCo4S3 active site in HER. Therefore, the overpotential of the hollow CoO/Co4S3@CoO/Co4S3 is only 190 mV (OER) and 81 mV (HER), respectively, at the current density of 10 mA cm–2. Moreover, the hollow CoO/Co4S3@CoO/Co4S3 showed the outstanding electrochemical stability in 60 h. In addition, in the two-electrode system assembled from the hollow CoO/Co4S3@CoO/Co4S3, only the potential of 1.48 V can achieve the current density of 10 mA cm–2. Impressively, the commercial solar panel is sufficient to drive the two-electrode electrolyzer consisting of hollow CoO/Co4S3@CoO/Co4S3. This finding offers a promising nonprecious metal-based catalyst that can be applied to catalyze the electrochemical overall water splitting

    Interface Engineering of Hollow CoO/Co<sub>4</sub>S<sub>3</sub>@CoO/Co<sub>4</sub>S<sub>3</sub> Heterojunction for Highly Stable and Efficient Electrocatalytic Overall Water Splitting

    No full text
    The key to improve the performance of electrochemically water splitting and simplify the entire system is to develop a dual-functional catalyst, which can be applied to catalyze the process of HER and OER. Therefore, we synthesized a novel hollow CoO/Co4S3@CoO/Co4S3 heterojunction with a core–shell structure as an excellent dual-functional catalyst. This sample is composed of an outer hollow CoO/Co4S3 cubic thin shell and an inner hollow CoO/Co4S3 sphere, and it can provide abundant catalytic active sites while effectively promoting the flow of reactants, products, and electrolytes. Meanwhile, the O–Co–S bond in the heterojunction interface can promote both the CoO active site in OER and theCo4S3 active site in HER. Therefore, the overpotential of the hollow CoO/Co4S3@CoO/Co4S3 is only 190 mV (OER) and 81 mV (HER), respectively, at the current density of 10 mA cm–2. Moreover, the hollow CoO/Co4S3@CoO/Co4S3 showed the outstanding electrochemical stability in 60 h. In addition, in the two-electrode system assembled from the hollow CoO/Co4S3@CoO/Co4S3, only the potential of 1.48 V can achieve the current density of 10 mA cm–2. Impressively, the commercial solar panel is sufficient to drive the two-electrode electrolyzer consisting of hollow CoO/Co4S3@CoO/Co4S3. This finding offers a promising nonprecious metal-based catalyst that can be applied to catalyze the electrochemical overall water splitting

    Interface Engineering of Hollow CoO/Co<sub>4</sub>S<sub>3</sub>@CoO/Co<sub>4</sub>S<sub>3</sub> Heterojunction for Highly Stable and Efficient Electrocatalytic Overall Water Splitting

    No full text
    The key to improve the performance of electrochemically water splitting and simplify the entire system is to develop a dual-functional catalyst, which can be applied to catalyze the process of HER and OER. Therefore, we synthesized a novel hollow CoO/Co4S3@CoO/Co4S3 heterojunction with a core–shell structure as an excellent dual-functional catalyst. This sample is composed of an outer hollow CoO/Co4S3 cubic thin shell and an inner hollow CoO/Co4S3 sphere, and it can provide abundant catalytic active sites while effectively promoting the flow of reactants, products, and electrolytes. Meanwhile, the O–Co–S bond in the heterojunction interface can promote both the CoO active site in OER and theCo4S3 active site in HER. Therefore, the overpotential of the hollow CoO/Co4S3@CoO/Co4S3 is only 190 mV (OER) and 81 mV (HER), respectively, at the current density of 10 mA cm–2. Moreover, the hollow CoO/Co4S3@CoO/Co4S3 showed the outstanding electrochemical stability in 60 h. In addition, in the two-electrode system assembled from the hollow CoO/Co4S3@CoO/Co4S3, only the potential of 1.48 V can achieve the current density of 10 mA cm–2. Impressively, the commercial solar panel is sufficient to drive the two-electrode electrolyzer consisting of hollow CoO/Co4S3@CoO/Co4S3. This finding offers a promising nonprecious metal-based catalyst that can be applied to catalyze the electrochemical overall water splitting
    corecore