26 research outputs found

    A Multi-Stage Framework for the 2022 Multi-Structure Segmentation for Renal Cancer Treatment

    Full text link
    Three-dimensional (3D) kidney parsing on computed tomography angiography (CTA) images is of great clinical significance. Automatic segmentation of kidney, renal tumor, renal vein and renal artery benefits a lot on surgery-based renal cancer treatment. In this paper, we propose a new nnhra-unet network, and use a multi-stage framework which is based on it to segment the multi-structure of kidney and participate in the KiPA2022 challenge

    Interplay between spin wave and magnetic vortex

    Full text link
    In this paper, the interplay between spin wave and magnetic vortex is studied. We find three types of magnon scatterings: skew scattering, symmetric side deflection and back reflection, which associate with respectively magnetic topology, energy density distribution and linear momentum transfer torque within vortex. The vortex core exhibits two translational modes: the intrinsic circular mode and a coercive elliptical mode, which can be excited based on permanent and periodic magnon spin-transfer torque effects of spin wave. Lastly, we propose a vortex-based spin wave valve in which via inhomogeneity modulation we access arbitrary control of the phase shift.Comment: 33 pages, 23 figures, 1 tabl

    Effects of gingipain extract on the biological characteristics of oral squamous cell carcinoma cell HN6

    Get PDF
    Objective·To observe the effects of gingipain extract on the biological characteristics of oral squamous cell carcinoma cell HN6.Methods·The HN6 cell line was selected, cultivated, and divided into different groups based on the protein concentration of gingipain extract from Porphyromonas gingivalis: control group, 3.125 Όg/mL group, 6.25 Όg/mL group, 12.5 Όg/mL group, 25 Όg/mL group, 50 Όg/mL group, and 100 Όg/mL group. After 24 and 48 h of cultivation, CCK-8 assay was used to detect the effects of gingipain extract on HN6 cell proliferation activity. Subsequent experiments were divided into control group, 25 Όg/mL group and 50 Όg/mL group. Flow cytometry was used to examine the effects of gingipain extract on cell cycle. Scratch assay and Transwell assay were performed to evaluate cell migration and invasion ability. Real-time PCR (RT-PCR) and Western blotting were used to measure the expression of E-cadherin and N-cadherin proteins and genes in cells.Results·Stimulated with gingipain extract for 24 h, the HN6 cells showed significantly increased proliferation activity in the 25 Όg/mL (P=0.025), 50 Όg/mL (P=0.000), and 100 Όg/mL (P=0.049) groups compared to the control group. After 48 h, proliferation activity was significantly higher in the 6.25 Όg/mL(P=0.024), 12.5 Όg/mL (P=0.006), 25 Όg/mL (P=0.000), 50 Όg/mL (P=0.000), and 100 Όg/mL (P=0.000) groups compared to the control group. Cell cycle analysis revealed that, after 24 h of gingipain stimulation, the proportion of HN6 cells in the G1 phase decreased, while the proportion in the S+G2 phase significantly increased compared to the control group (25 Όg/mL group: P=0.024; 50 Όg/mL group: P=0.001). Compared to the control group, the scratch assay demonstrated a significant increase in the percentage of scratch closure as the concentration of gingipain extract increased (P=0.001). Compared to the control group, the Transwell invasion assay showed a significant increase in the number of cells passing through the bottom of the chamber as the concentration of gingipain extract increased. RT-PCR and Western blotting results indicated that as the concentration of gingipain extract increased, the expression levels of N-cadherin mRNA and protein in HN6 cells significantly increased, while the expression levels of E-cadherin mRNA and protein significantly decreased compared to the control group.Conclusion·Gingipain extract could promote proliferation, migration, and invasion of oral squamous cell carcinoma HN6 cells

    Seizing the window of opportunity to mitigate the impact of climate change on the health of Chinese residents

    Get PDF
    The health threats posed by climate change in China are increasing rapidly. Each province faces different health risks. Without a timely and adequate response, climate change will impact lives and livelihoods at an accelerated rate and even prevent the achievement of the Healthy and Beautiful China initiatives. The 2021 China Report of the Lancet Countdown on Health and Climate Change is the first annual update of China’s Report of the Lancet Countdown. It comprehensively assesses the impact of climate change on the health of Chinese households and the measures China has taken. Invited by the Lancet committee, Tsinghua University led the writing of the report and cooperated with 25 relevant institutions in and outside of China. The report includes 25 indicators within five major areas (climate change impacts, exposures, and vulnerability; adaptation, planning, and resilience for health; mitigation actions and health co-benefits; economics and finance; and public and political engagement) and a policy brief. This 2021 China policy brief contains the most urgent and relevant indicators focusing on provincial data: The increasing health risks of climate change in China; mixed progress in responding to climate change. In 2020, the heatwave exposures per person in China increased by 4.51 d compared with the 1986–2005 average, resulting in an estimated 92% increase in heatwave-related deaths. The resulting economic cost of the estimated 14500 heatwave-related deaths in 2020 is US$176 million. Increased temperatures also caused a potential 31.5 billion h in lost work time in 2020, which is equivalent to 1.3% of the work hours of the total national workforce, with resulting economic losses estimated at 1.4% of China’s annual gross domestic product. For adaptation efforts, there has been steady progress in local adaptation planning and assessment in 2020, urban green space growth in 2020, and health emergency management in 2019. 12 of 30 provinces reported that they have completed, or were developing, provincial health adaptation plans. Urban green space, which is an important heat adaptation measure, has increased in 18 of 31 provinces in the past decade, and the capacity of China’s health emergency management increased in almost all provinces from 2018 to 2019. As a result of China’s persistent efforts to clean its energy structure and control air pollution, the premature deaths due to exposure to ambient particulate matter of 2.5 ÎŒm or less (PM2.5) and the resulting costs continue to decline. However, 98% of China’s cities still have annual average PM2.5 concentrations that are more than the WHO guideline standard of 10 ÎŒg/m3. It provides policymakers and the public with up-to-date information on China’s response to climate change and improvements in health outcomes and makes the following policy recommendations. (1) Promote systematic thinking in the related departments and strengthen multi-departmental cooperation. Sectors related to climate and development in China should incorporate health perspectives into their policymaking and actions, demonstrating WHO’s and President Xi Jinping’s so-called health-in-all-policies principle. (2) Include clear goals and timelines for climate-related health impact assessments and health adaptation plans at both the national and the regional levels in the National Climate Change Adaptation Strategy for 2035. (3) Strengthen China’s climate mitigation actions and ensure that health is included in China’s pathway to carbon neutrality. By promoting investments in zero-carbon technologies and reducing fossil fuel subsidies, the current rebounding trend in carbon emissions will be reversed and lead to a healthy, low-carbon future. (4) Increase awareness of the linkages between climate change and health at all levels. Health professionals, the academic community, and traditional and new media should raise the awareness of the public and policymakers on the important linkages between climate change and health.</p

    Research on the Control of Mining Instability and Disaster in Crisscross Roadways

    No full text
    In order to solve the disaster caused by the instability of spatial crisscross roadways under the action of leading abutment pressure in the coal mine face, combined with a specific engineering example, the methods of theoretical analysis, numerical simulation and field measurement are adopted to simulate and analyze the stress mutual disturbance intensity and influence range of spatial crisscross roadways. The evolution law of the plastic zone in spatial crisscross roadways under the influence of mining is explored, and the key to mining instability control is made clear. The roof of the return air roadway, the shoulder angle of the two sides and the coal wall are the key parts of surrounding rock stability control. On this basis, the cooperative control scheme of changing the roadway section shape (straight wall semicircular arch), supporting (anchor cable and “U” section steel) and modifying (grouting) is put forward. Through the field measurement, within the influence range of the return air roadway, the displacement deformation of the top and bottom is less than 200 mm, which achieves the goal of roadway safety and stability. Furthermore, based on the theory of “butterfly plastic zone”, the mechanical mechanism of the overall instability of the spatial crisscross roadway is revealed; that is, during the advance of the working face, the advance mining stress is superimposed with the surrounding rock stress of the crisscross roadway, and the peak value of the partial stress of the surrounding rock mass of the crisscross roadway is increased. The expansion of the plastic zone is intensified, and beyond 7 m from the crisscross position, the shoulder angle of the two sides and the leading plastic zone of the coal wall of the working face are connected with each other, which leads to the overall failure and instability of the surrounding rock between the roadways at the intersection

    Innovate geopolymer synthesis for green mine road construction: Analysis of efflorescence behavior and strength analysis

    No full text
    Waste generated from coal mining and consumption causes severe pollution. This study used open-pit mine road aggregate (OMRA), ground granulated blast-furnace slag (GGBS), and coal fly ash (CFA) to synthesize geopolymers for road construction in surface mines. The influences of multiple factors on efflorescence behavior were investigated. Findings reveal that increasing the modulus of the alkali activator, contents of slag and alkali activator, and isolating air contact reduces efflorescence and enhances mechanical strength. The optimized synthesis scheme was applied on-site, showing no efflorescence after construction, and satisfying the strength requirements of open-pit mine roads

    Cryogenic origin of fractionation between perchlorate and chloride under modern martian climate

    No full text
    International audienceAbstract The high perchlorate (ClO 4 − ) to chloride (Cl − ) ratios observed at the Phoenix landing site, northern polar region of Mars, have been puzzling since detection. However, a lack of understanding of perchlorate-chloride-water systems under cryogenic conditions makes it difficult to assess ClO 4 − /Cl − ratios during deliquescence-related processes. Here we quantitatively evaluate ClO 4 − /Cl − fractionation in deliquescence-induced brines of magnesium- and calcium-perchlorate-chloride salt mixtures under subzero conditions, by measuring solubility data and constructing temperature-dependent thermodynamic models. We find that under specific relative humidity (RH) and temperature ( T ) conditions, deliquescence of perchlorate-chloride mixtures may form brines with fractionated ClO 4 − /Cl − signatures. Appropriate RH -T , water-limited conditions, and aeolian processes are required to produce and preserve the elevated ClO 4 − /Cl − signatures in soils. Under the present climate, the north polar region can support ClO 4 − /Cl − fractionation and potentially enrich perchlorate for longer periods on global Mars. This highlights the uniqueness of Mars’ arctic environment and its implications for modern habitability

    Investigations on the Carrier Mobility of Cs<sub>2</sub>NaFeCl<sub>6</sub> Double Perovskites

    No full text
    Double perovskite materials have gradually become widely studied due to their potential applications in solar cells and other optoelectronic devices. We take Cs2NaFeCl6 as an example to investigate the carrier mobility with respect to the acoustic phonon and the optical phonon scattering mechanisms. By considering the deformation potential, carrier effective mass, and bulk modulus, the longitudinal acoustic (LA) phonon-determined mobilities for electrons and holes in Cs2NaFeCl6 are found to be ÎŒe = 2886.08 cm2 v−1 s−1 and ÎŒh = 39.09 cm2 v−1 s−1, respectively. The optical scattering mechanism involves calculating the Fröhlich coupling constant, dielectric constant, and polaron mass to determine the multiple polar optical (PO) phonon-scattering-determined mobilities, resulting in ÎŒe = 279.25 cm2 v−1 s−1 and ÎŒh = 21.29 cm2 v−1 s−1, respectively. By combining both interactions, the total electron mobility and hole mobility are determined to be 254.61 cm2 v−1 s−1 and 13.78 cm2 v−1 s−1, respectively. The findings suggest that the polarization of both electrons and ions, small coupling constant, and bulk modulus in Cs2NaFeCl6’s lattice make PO scattering a significant contribution to carrier mobility in this specific double perovskite, highlighting the importance of considering this in enhancing the optoelectronic properties of Cs2NaFeCl6 and other double perovskites
    corecore