114 research outputs found

    Probability density forecasts for steam coal prices in China:The role of high-frequency factors

    Get PDF
    Abstract Coal plays a key role in China's economy as a dominant primary energy resource. In this paper, we provide probability density forecasts for weekly steam coal prices in China based on daily factors such as renewable energy source, Daqing oil, Japanese natural gas, Australia steam coal prices, coal mining industry index, A-share power sector index, A-share index, coal industry index, and temperature. The empirical results show that the influence of temperature lasts longer than other factors, while the Australia steam coal prices, renewable energy source and A-share index are the three best predictors for steam coal prices. It is also shown that the high-frequency factors are useful to forecast steam coal prices and that considering the nonlinearity of coal prices can improve the forecast accuracy by about 22%. We further provide the probability density forecasts for steam coal prices based on the influence of all the selected factors, the results suggest that our proposed method can provide accurate and satisfying probability density forecasts. Given these results, the policy-makers can make effective strategies which can not only adjust the energy structure but also ensure economic growth

    Adaptive Sliding Mode Fault Tolerant Control for Autonomous Vehicle With Unknown Actuator Parameters and Saturated Tire Force Based on the Center of Percussion

    Get PDF
    With consideration of tire force saturation in vehicle motions, a novel path-following controller is developed for autonomous vehicles with unknown-bound disturbances and unknown actuator parameters. An adaptive sliding-mode fault-tolerant control (ASM-FTC) strategy is designed to stabilize the path-following errors without any information of disturbance boundaries, actuator fault boundaries and steering ratio from the steering wheel to the front wheels. By selecting the distance from the center of gravity to the center of percussion as the preview length, the effects of the lateral rear-tire force are decoupled and cancelled out, and then the preview error, which represents the path-following performance, can be only commanded by the front-tire force. To further address the issue of unknown tire-road friction limits, a modified ASM-FTC strategy is presented to improve the path-following performance as the lateral tire force is saturated. Simulation results show that the modified ASM-FTC controller demonstrates superior tracking performance over the normal ASM-FTC while the autonomous vehicle follows desired paths

    Distributed Fixed-Time Control for Leader-Steered Rigid Shape Formation with Prescribed Performance

    Get PDF
    Resorting to the principle of rigid body kinematics, a novel framework for a multi-robot network is proposed to form and maintain an invariant rigid geometric shape. Unlike consensus-based formation, this approach can perform both translational and rotational movements of the formation geometry, ensuring that the entire formation motion remains consistent with the leader. To achieve the target formation shape and motion, a distributed control protocol for multiple Euler-Lagrange robotic vehicles subject to nonholonomic constraints is developed. The proposed protocol includes a novel prescribed performance control (PPC) algorithm that addresses the second-order dynamics of the robotic vehicles by employing a combination of nonsingular sliding manifold and adaptive law. Finally, the effectiveness of the proposed formation framework and control protocol is demonstrated through the numerical simulations and practical experiments with a team of four robotic vehicles

    An Efficient GPU-Based Out-of-Core LU Solver of Parallel Higher-Order Method of Moments for Solving Airborne Array Problems

    Get PDF
    The parallel higher-order method of moments (HoMoM) with a GPU accelerated out-of-core LU solver is presented for analysis of radiation characteristics of a 1000-element antenna array over a full-size airplane. A parallel framework involving MPI and CUDA is adopted to ensure that the procedures run on a hybrid CPU/GPU cluster. An efficient two-level out-of-core scheme is designed to break the bottleneck of both GPU memory and physical memory when solving electrically large and complex problems. To hide communication time between CPU and GPU, asynchronous communications are chosen to enable overlapping between communication and computation. For large problems that cannot fit in GPU memory or physical memory, the two-level out-of-core LU solver is able to achieve a speedup of about 1.6x over the traditional out-of-core LU solver based on a highly optimized math library

    COVID-19 vaccines based on viral nanoparticles displaying a conserved B-cell epitope show potent immunogenicity and a long-lasting antibody response

    Get PDF
    The COVID-19 pandemic caused by SARS-CoV-2 sparked intensive research into the development of effective vaccines, 50 of which have been approved thus far, including the novel mRNA-based vaccines developed by Pfizer and Moderna. Although limiting the severity of the disease, the mRNA-based vaccines presented drawbacks, such as the cold chain requirement. Moreover, antibody levels generated by these vaccines decline significantly after 6 months. These vaccines deliver mRNA encoding the full-length spike (S) glycoprotein of SARS-CoV-2, but must be updated as new strains and variants of concern emerge, creating a demand for adjusted formulations and booster campaigns. To overcome these challenges, we have developed COVID-19 vaccine candidates based on the highly conserved SARS CoV-2, 809-826 B-cell peptide epitope (denoted 826) conjugated to cowpea mosaic virus (CPMV) nanoparticles and bacteriophage Qβ virus-like particles, both platforms have exceptional thermal stability and facilitate epitope delivery with inbuilt adjuvant activity. We evaluated two administration methods: subcutaneous injection and an implantable polymeric scaffold. Mice received a prime–boost regimen of 100 μg per dose (2 weeks apart) or a single dose of 200 μg administered as a liquid formulation, or a polymer implant. Antibody titers were evaluated longitudinally over 50 weeks. The vaccine candidates generally elicited an early Th2-biased immune response, which stimulates the production of SARS-CoV-2 neutralizing antibodies, followed by a switch to a Th1-biased response for most formulations. Exceptionally, vaccine candidate 826-CPMV (administered as prime-boost, soluble injection) elicited a balanced Th1/Th2 immune response, which is necessary to prevent pulmonary immunopathology associated with Th2 bias extremes. While the Qβ-based vaccine elicited overall higher antibody titers, the CPMV-induced antibodies had higher avidity. Regardless of the administration route and formulation, our vaccine candidates maintained high antibody titers for more than 50 weeks, confirming a potent and durable immune response against SARS-CoV-2 even after a single dose
    • …
    corecore