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Distributed Fixed-Time Control for
Leader-Steered Rigid Shape Formation with

Prescribed Performance
Zhongchao Liang, Member, IEEE, Chunxiao Lyu, Mingyu Shen, Student Member, IEEE, Jing Zhao, Zhongguo Li,

Member, IEEE, and Zhengtao Ding, Senior Member, IEEE

Abstract—Resorting to the principle of rigid body kinematics,
a novel framework for a multi-robot network is proposed
to form and maintain an invariant rigid geometric shape.
Unlike consensus-based formation, this approach can perform
both translational and rotational movements of the formation
geometry, ensuring that the entire formation motion remains
consistent with the leader. To achieve the target formation shape
and motion, a distributed control protocol for multiple Euler-
Lagrange robotic vehicles subject to nonholonomic constraints
is developed. The proposed protocol includes a novel prescribed
performance control (PPC) algorithm that addresses the second-
order dynamics of the robotic vehicles by employing a combina-
tion of nonsingular sliding manifold and adaptive law. Finally, the
effectiveness of the proposed formation framework and control
protocol is demonstrated through the numerical simulations and
practical experiments with a team of four robotic vehicles.

Index Terms—Distributed control, fixed-time control, rigid
shape geometry, prescribed performance constraint, multi-robot
vehicles, nonholonomic constraint.

I. INTRODUCTION

IN the past few decades, the strategies for cooperation and
coordination among multiple agents have attracted signifi-

cant attention across various fields. Among these, the protocols
of formation control have seen diverse advancements through
distributed approaches [1]. These approaches have found wide
applications in various agent types, such as unmanned surface
vehicles (USVs) [2], connected automated vehicles (CAVs)
[3], and wheeled mobile robots (WMRs) [4]-[5].

Practical applications often demand fast convergence in
controlled systems [6]. In this context, the fixed-time control
methodology presents a notable advantage by ensuring a
bounded settling time, independent of initial conditions [7].
It outperforms finite-time and asymptotic control methods
in terms of convergence performance, gaining substantial
prominence in the domain of formation control strategies
for multi-agent systems [8]-[10]. In the existing literature,
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both the homogeneous method and sliding mode control have
been employed for designing fixed-time control laws [11]-
[12]. However, the homogeneous method heavily relies on
the homogeneity of system dynamics, facing challenges when
unknown disturbances perturb the system. As a result, it
often requires supplementary techniques, such as disturbance
observers, to enhance its robustness [13]. In contrast, sliding
mode control (SMC) stands out for its inherent capacity to
fully compensate for matched uncertain dynamics and external
disturbances, making it a more suitable choice for application
in multi-robot systems facing uncertainties.

Beyond considering convergence rates and steady-state per-
formance, transient performance throughout the entire control
process plays a crucial role. Prescribed Performance Control
(PPC) has been introduced to ensure that the state error
remains within predefined bounds [14]. Subsequently, PPC
protocols have been utilized in achieving formation control
objectives across various multi-agent systems. For instance,
in coordinating USVs, the PPC approach prevents collisions
among formation members by mitigating potential excessive
inputs in confined spaces [2]. In platoon formation control for
CAVs, PPC-based controllers stabilize the entire queue and
implement spacing strategies [3]. Within cooperative teams
of WMRs, the PPC methodology confines robot states within
sensor ranges [15]. Additionally, a PPC-based distributed
formation cooperative algorithm has been proposed for a
heterogeneous multi-agent system (MAS) comprising both
Unmanned Aerial Vehicles (UAVs) and Unmanned Ground
Vehicles (UGVs) to address potential actuator failures [16].

While PPC formation control approaches have success-
fully integrated fixed-time control techniques, these controlled
systems are often described using single integrator models.
However, in real-world applications, the kinematic control
of single integrator models may not yield accurate results.
In such scenarios, force or torque control methods designed
for higher-order dynamics are essential for achieving superior
performance. Consequently, cooperative control protocols have
been extended to higher-order dynamics in multi-agent sys-
tems [17]-[18]. To tackle high-order systems, the backstepping
algorithm and the adding a power integrator technique can be
employed and integrated within fixed-time PPC protocols [19]-
[21]. However, controllers based on the backstepping algo-
rithm or the adding a power integrator often involve high-order
derivatives of the virtual controller for the controlled high-
order system, leading to the issue of derivative explosions.
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In light of these considerations, this study aims to develop a
nonsingular fixed-time sliding-mode approach for high-order
systems to achieve formation control objectives while adhering
to prescribed performance constraints.

Current research on distributed formation control with com-
munication topologies predominantly revolves around control
protocols that leverage the theoretical foundations of con-
sensus control approaches [22]-[24]. In the consensus-based
control approach, one of the control objectives is to achieve
consensus in orientation among the agents [25]-[26]. Due to
nonholonomic constraints, the instantaneous center of each
robot lies on the line orthogonal to its velocity direction, cor-
responding to its orientation. Consequently, considering both
the consensus objectives and the nonholonomic constraints,
the lines orthogonal to the velocity direction of each robot
become parallel when the robot group forms a rigid geometric
relationship. As a result, the instantaneous center of the formed
rigid geometry is located at an infinitely far-away position.
This indicates that the consensus-based formation geometry is
limited to performing only translational movement [22], [25],
[27]-[29], lacking a shared center or rotational motion.

Despite the ability of consensus-based control protocols
to achieve complex trajectories in formations [30]-[31], the
absence of rotational motion in these formation geometries
can lead to limitations in certain scenarios. To enrich ma-
nipulations of the rotational motion, we propose a novel
framework called leader-steered rigid shape formation. This
formation incorporates both translational and rotational move-
ments, extending the capabilities of the leader to perform
diverse tasks. In scenarios involving the transportation or
docking of large-sized objects by multiple mobile robots, the
formation geometry is typically designed to match the fixed
shape of the objects. The inclusion of rotational movement in
the formation allows for achieving the desired posture or ori-
entation for successful docking, which cannot be accomplished
by a consensus-based formation. Furthermore, in autonomous
searching or exploration tasks, strategic positioning of certain
robots at the front of the formation enables them to explore
the unknown area and ensure the safety for their leader. In
contrast, a consensus-based formation lacking rotational move-
ment would result in the leading robot, initially positioned at
the last spot, moving to the first position while the trajectory
involves a turning of more than 180 degrees. Similarly, con-
sidering the sensing topology where the leader is placed at the
first front to allow other agents’ onboard cameras to capture
crucial information, the absence of rotational movement in
the formation geometry can lead to switches in the sensing
topology as the formation order is altered. By highlighting
these distinctions, it becomes evident that the inclusion of
rotational movement in leader-steered rigid shape formations
holds great importance for specific tasks, such as docking,
exploration, and maintaining consistent sensing topologies.
These tasks often require the formation to adapt its orientation
or posture, which can only be achieved through the integration
of rotational motion.

This paper addresses the challenge of integrating the dis-
tributed formation protocol with fixed-time control and pre-
scribed performance control (PPC) schemes for multi-robot

vehicle dynamics. Additionally, we explore the incorporation
of directed graphs and the leader-steered rigid shape formation.
Inspired by the preceding discussions, the primary innovations
are highlighted as follows.

1) Leader-Steered Rigid Shape Formation: This study in-
troduces a novel formation framework defined as “leader-
steered rigid shape formation”. The entire rigid geometric
shape, connecting all agents, consistently follows the
leader’s movement. Notably, the proposed formation is
capable of performing both translational and rotational
movements based on the leader’s motion.

2) Sliding Mode and Prescribed Performance Control
Algorithm: We propose an innovative algorithm that
combines sliding mode control and prescribed perfor-
mance control to effectively address challenges posed by
high-order systems, with a specific focus on achieving
fixed-time convergence.

3) Adaptive Algorithms with Prescribed Performance
Control: This study contributes theoretically to adap-
tive algorithms integrated with prescribed performance
control when the system parameters and disturbance are
completely unknown.

Compared with existing literature, our method exhibits
novelty in several aspects:

1) In contrast to conventional consensus-based formation
control [26]-[28], which primarily involves translational
movements of the entire formation geometry, our in-
novative leader-steered rigid shape formation is guided
by a leader performing both translational and rotational
movements. Specifically designed for robots subject to
nonholonomic constraints, resulting in bearing deviations
among individual agents, our approach distinguishes from
the extended consensus-based formation framework for
holonomic robots [32].

2) Compared to existing leader-following formation models
to achieve a rigid geometry [4], [33-34], our approach
addresses limitations where all followers share a common
leader.

3) The proposed control algorithm differs from traditional
backstepping algorithms [20-21], [35], which may lead
to derivative explosion due to calculations of multiple
state derivatives. Our method incorporates a fixed-time
nonsingular sliding manifold to mitigate this issue.

4) In contrast to existing research combining sliding mode
control and prescribed performance control [36-38], typi-
cally assuming known system parameters and disturbance
bounds, our work extends the applicability of this ap-
proach. We incorporate adaptive algorithms to address
completely unknown system parameters and disturbances,
achieving practical fixed-time convergence.

The subsequent sections are structured as follows: Section II
encompasses the presentation of robotic dynamics, formation
model, control objectives, and various lemmas. The design of
the formation protocol is provided in Section III. Sections IV
and V showcase the effectiveness of the proposed formation
model and protocol through simulations and experiments.
Finally, the conclusions are drawn in Section VI.
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II. PROBLEM FORMULATION

A. Dynamic model of robotic vehicles

Consider a formation system of multi-robot vehicles com-
prising of k followers and a leader denoted as L. The vehicles,
indexed as i (i = L, 1, 2, ..., k), traverse the XOY plane,
as illustrated in Fig. 1. Let m represent the vehicle mass, Iz
represent the moment of inertia, 2l denote the distance between
two driving wheels, and r denote the wheel radius. The
position coordinates of the vehicle center pci for the ith vehicle
can be expressed as pci = [xci, yci]

T. The corresponding
generalized coordinates are defined as qci = [xci, yci, θi]

T.
The kinematic equation for vehicle i is defined as

q̇ci = Ei (θi) vi =

 cos θi 0
sin θi 0

0 1

[ vci
ωi

]
(1)

where θi denotes the heading angle of i, while vci and ωi rep-
resent the centroid velocity and angular velocity, respectively.

Subsequently, the Euler-Lagrange equation for qci in Carte-
sian coordinates can be formulated as

M̄i (qci) q̈ci + C̄i (q̇ci, qci) q̇ci + Q̄i (qci) =B̄i (qci) τi + τid

+AT
i (qci) ιi

(2)
with

M̄i(qci) =

 m 0 0
0 m 0
0 0 Iz

 , C̄i(q̇ci, qci) = 03×3

B̄i(qci) = r−1

 cos θi
sin θi
−l

cos θi
sin θi
l

 ,
Ai(qci) =

[
− sin θi cos θi 0

]
,

where M̄i(qci) ∈ R3×3 stands for the symmetric positive
definite inertia matrix associated with the vehicle parameters;
C̄i(q̇ci, qci) ∈ R3×3 is the Coriolis moment matrix; Q̄i(qci) ∈
R3×1 represents the unknown damping matrix; B̄i(qci) ∈
R3×2 denotes the input transformation matrix; τi = [τLi, τRi]

T

designates the total torque of the left and right wheels,
respectively, distributed among four wheels using the optimal
principle [39]; τid ∈ R2×1 incorporates the uncertainties,
including the unknown Q̄i(qci); Ai(qci) ∈ R1×3 represents
the nonholonomic constraint term with the constraint matrix
Ai(qci)q̇ci = 0; ιi denotes the unknown Lagrange multiplier.

The dynamics description of vehicle i, with the nonholo-
nomic constraint eliminated, is derived by substituting the time
derivative of (1) into (2) and left-multiplying both sides by
ET
i (θi), resulting in

Mi(qci)υ̇i + Ci(q̇ci, qci)υi = Bi(qci)τi + τid, (3)

with
Mi(qci) = ET

i M̄iEi =

[
m 0
0 Iz

]
,

Ci(q̇ci, qci) = ET
i

(
M̄iEi + C̄iEi

)
= 02×2,

Bi(q̇ci, qci) = ET
i B̄i = r−1

[
1 1
−l l

]
.

The position of the vehicle head, denoted as pi = [xi, yi]
T,

can be expressed as pi = [xci + hcos(θi), yci + hsin(θi)]
T,

where h represents the offset from pi to pci.
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Fig. 1. Vehicle i and j are in (d, φ)-formation frame.

B. Graph Theory and Formation Tracking Error

Consider a group of k+ 1 robotic vehicles characterized by
a directed graph G = {O,S}, where O(G) = {L, 1, 2, · · · , k}
denotes the node set, and S(G) = {(j, i) : j 6= i, i, j ∈ O(G)}
represents the collection of directed and connected edges.
Specifically, (j, i) ∈ S(G) implies that vehicle j is a neighbor
of vehicle i, allowing i to access information of j. Further-
more, the leading vehicle L serves as the starting point of the
information flow and only acts as the neighbor of some other
individuals in the network, i.e., {(j,L) : j ∈ O(G)} * S(G)
and {(L, i) : i ∈ O(G)} ⊆ S(G). It is assumed that the di-
rected acyclic graph G contains a directed spanning tree, with
the leading vehicle L serving as the root of the tree.

The adjacency matrix for graph G is denoted by A(G) =
{aij} ∈ R(k+1)×(k+1) with i, j ∈ O(G), where aij = 1 with
i 6= j if (i, j) ∈ S(G), and aij = 0 otherwise. Notably, aii = 0
for i ∈ O(G). The directed Laplacian matrix for graph G
is defined as L(G) = {lij} ∈ R(k+1)×(k+1), where lij =∑k
j=1 aij for i = j, and lij = −aij for i 6= j.
To elucidate the formation control objective, the following

definitions are introduced.
Definition 1: Rigid shape formation. A collection of k + 1

robotic vehicles is considered to be in a rigid shape formation,
if the Euclidean distance between any two agents remains
constant. The constant desired distance dr

ji between agents
i and j is denoted as

dr
ji = ‖pr

i − pj‖
2
> 0, ∀j, i = L, 1, 2, · · · , k,

where ‖·‖ denotes the Euclidean norm; pr
i represents the ideal

position of pi within the formation. It is noteworthy that the
formation of a geometric shape within the team, involving k+1
vehicles, implies that k ≥ 2.

Definition 2: Leader-steered rigid shape formation. Con-
sider a directed acyclic graph comprising one leading robotic
vehicle and k following robotic vehicles. This graph encom-
passes a directed spanning tree, where the leading robotic
vehicle acts as the root of the tree. The robotic vehicle group
is deemed to be in a leader-steered rigid shape formation,
if it fulfills Definition 1, and the yaw motion of the entire
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Fig. 2. Movement transformation of formation. (a) Formation translational,
(b)Formation rotation.

geometric shape connecting all agents consistently aligns with
the leading robotic vehicle.

In this paper, we propose a formation target aimed at
creating and sustaining the ideal fixed geometry, as outlined
in Definition 2, while taking into account the communication
topology. The formation tracking error for the ith vehicle,
following the local neighbor vehicle j, is defined as

eji(t)
∆
= pi(t)− pj(t)−Dr

ji(t), (4)

where i ∈ O(G)\{L}, j ∈ O(G); Dr
ji(t) ∈ R2×1 is the desired

vector from vehicle j to vehicle i , and is defined as

Dr
ji(t) =

[
dr
ji,x(t)
dr
ji,y(t)

]
=

[
−dr

ji cos
(
φr
ji + θj

)
−dr

ji sin
(
φr
ji + θj

) ] , (5)

where φr
ji denotes the angle between vj and the vector from

pj to pr
i; d

r
ji represents the desired relative distance between

pr
i and pj , as illustrated in Fig.1.
Taking into account the communication topology, the for-

mation tracking error regarding vehicle i is introduced as:

ηi(t) = pi(t) +
∑

j∈O(G)\{i}

lij
lii

[
pj(t) +Dr

ji(t)
]
, (6)

where ηi(t) = [ηi,x(t), ηi,y(t)]T ∈ R2×1, and i ∈ O(G)\{L}.
Taking the second-order time derivative of (6) along (3)

yields
η̈i (t) = gi(t) + Jiτi + δi(t), (7)

where δi(t) ∈ R2×1 involves the unmodel items and perturba-
tions, and

Ji =

[
Ji,x
Ji,y

]
=

[
Iz cos θi+hlm sin θi

Izmr
Iz cos θi−hlm sin θi

Izmr
Iz sin θi−hlm cos θi

Izmr
Iz sin θi+hlm cos θi

Izmr

]
,

gi(t) =

 fi,x +
∑

j∈O\{i}

lij
lii

[
fj,x + drjiω

2
j cos

(
φrji + θj

)]
fi,y +

∑
j∈O\{i}

lij
lii

[
fj,y − drjiω

2
j sin

(
φrji + θj

)]
 ,[

fi,x
fi,y

]
=
[

−vciωi sin θi − ω2
i h cos θi

vciωi cos θi − ω2
i h sin θi

]
.

By invoking the equivalent formation Lemma [39], the
stabilization of the error dynamics (7) implies the stabilization
for the formation tracking error defined in (4). Upon analyzing
(6), it is evident that ηi,x and ηi,y appear in the same
mathematical expressions with similar physical meanings. To
simplify subsequent derivations, we employ ηi,a with a = x, y
for brevity. With respect to δi,a, we assume the existence of
an unknown positive constant δim,a such that |δi,a| ≤ δim,a.

Remark 1: Definition 1 provides the entire formation ge-
ometry, while Definition 2 further specifies the motion of the
entire formation geometry. Definition 1, when integrated with
consensus bearing angles for multi-agent networks, has been
proposed and achieved through consensus-based formation
control protocols. Utilizing the kinematic law, the common
instantaneous center of all agents is positioned infinite far-
away, resulting in the entire geometry solely performing
translational movements. In contrast, Definition 2 presents a
framework where the translational and rotational movements
of the invariant formation geometry are aligned with the
leader’s motion.

Remark 2: According to rigid graph theory, the stable and
fixed geometry for the multi-robot network in Definition 1
must adhere to the requirement of the minimal rigid topology
condition the minimal rigid topology condition when employ-
ing the distance formation model, known as the (d, d) pattern.
To account for the local topology and the formation task
for vehicle i, we introduce the (d, φ)-based formation model,
incorporating the time-varying angle as given in (5). In com-
parison, consensus-based formation control can achieve the
control target of lim

t→∞
|vi − vL| = 0 and lim

t→∞
|ωi − ωL| = 0,

ensuring that the common instantaneous center of velocity
of the formation members is consistently located at infinity,
leading to translational motion only. This implies that within
consensus-based formation, once the accumulated turning mo-
tion of the leader exceeds 180 degree, the leader loses its
leading position, violating Definition 2, as depicted in Fig.
2(a). In contrast, the proposed time-varying parameter Dr

ji(t)
enables the formation members to achieve the same velocity
centroid, as shown in Fig. 1 and Fig. 2(b), and the leader
remains at at the forefront of the team, satisfying Definition
2. Furthermore, the proposed formation model facilitates both
translational and rotational motions of the formation, as illus-
trated in Fig. 2(b). In extended-consensus protocols, rotation
movement has been discussed for fully-constrained agents in a
formation system [32], such as a drone formation system and
a Mecanum wheel robot system. However, for robotic vehicles
subject to non-holonomic constraints, achieving the rotation of
rigid formations, as depicted in Fig. 2(b), poses a challenge
due to their inability to perform independent lateral movements
of the vehicle body. Thus, the primary focus of this paper is to
develop a leader-steered rigid shape formation algorithm for
mobile robots subject to non-holonomic constraints.

Remark 3: It has been acknowledged that the fixed for-
mation geometry cannot be achieved by the formation model
based on the bearing angle offset of the following agent [5].
Therefore, the (d, φ) formation model in this paper is based
on the bearing angle offset of the leading agent, and the
actual time-varying velocity direction offsets among agents
are considered in (5) to achieve fixed formation geometry.
Notably, the following agents in the (d, φ) model of the
existing research always share a common leader [2], [40].
Consequently, this paper also considers the topology among
the multi-robotic vehicles, specifically addressing scenarios
where the following agents do not share a common leader.
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C. Formation Control Objective

To achieve the desired geometry and motion, ηi,a plays a
crucial role in determining the formation control performance.
The following conditions are established for ηi,a.

1) Initial condition: At t = 0, the location of vehicle i
satisfies the following constraint

η
i,a
< ηi,a(0) < η̄i,a, i = 1, · · · , k, (8)

where η
i,a
∈ R and η̄i,a ∈ R represent the minimum and

maximum ranges of ηi,a(0), ensuring η
i,a

< 0 and η̄i,a > 0,
respectively.

2) Prescribed performance boundary: If (8) holds, the for-
mation target is predefined to satisfy the following constraint

ηi,a (t) ∈ Ωi,a, ∀t ≥ 0, (9)

where Ωi,a = {ηi,a(t)| − kiη,aρi,a(t) ≤ ηi,a(t) ≤ ρi,a(t)},
kiη,a is a positive gain, and the decay boundary function
ρi,a(t) is defined as

ρi,a (t) = (ρi0,a − ρi∞,a) e−kiρ, at + ρi∞,a, (10)

in which, kiρ,a is a positive design parameter, ρi0,a = η̄i,a,
and ρi∞,a represents the steady-state boundary of ηi,a with
0 < ρi∞,a < ρi0,a. Deriving from (8) and (9), it is evident
that kiη,a = −η

i,a
/η̄i,a > 0 .

With these considerations, we can specify the distributed
formation control objectives as follows.

1) Fixed-time Convergence: The formation tracking errors
ηi,a exhibit fixed-time convergence to the residual set of (9),
forming a neighborhood of zero.

2) Prescribed Performance: Throughout the entire for-
mation tracking process, the formation tracking errors ηi,a
consistently adhere to the prescribed performance constraints
(9).

Furthermore, achieving the above control objectives ensures
the formation and maintenance of the leader-steered rigid
shape formation as defined in Definition 2.

D. Preliminaries

Lemma 1: [10] For xi ≥ 0, i = 1, · · · , n, it follows
n∑
i=1

xpi ≥
(

n∑
i=1

xi

)p
, 0 < p ≤ 1;

n∑
i=1

xpi ≥ n1−p
(

n∑
i=1

xi

)p
, p > 1.

Lemma 2: For ẋ = f (x), consider a continuous positive
definite and radially unbounded function V (x). Suppose the
following inequality holds

V̇ ≤ −αV p − βV q + γV m + ϕV n + C,

where α, β, γ, ϕ, C, p, q,m, n are all positive constants satis-
fying p > m > n > 1 > q and C <∞. Then, the system can
globally converge to the following set

V (x) ≤ VM = max

{
p−m

√
γ

$1α
, p−n
√

ϕ

$2α
, p
√

C

$3α

}
,

(11)

in a fixed-time, and the positive scalars $1, $2, $3 satisfy
$1 + $2 + $3 ∈ (0, 1). Furthermore, the fixed settling time
T is constrained by

T ≤ Tmax =
1(

1−
3∑
c=1

$c

)
α (p− 1)

+
1

β (1− q)
. (12)

Proof: If a system ẋ = f(x) satisfies the fixed-time theory

as discussed in [41], then, for
3∑
c=1

$c ∈ (0, 1), the following

inequality holds

V̇ ≤ − (1−$1 −$2 −$3)αV p − βV q + (γV m −$1αV
p)

+ (ϕV n −$2αV
p) + (C −$3αV

p) .
(13)

If V (x) fails to satisfy (11), then the following inequality
holds  γV m −$1αV

p < 0
ϕV n −$2αV

p < 0
C −$3αV

p < 0
. (14)

In accordance with the fixed-time theory [41], x will con-
verge to the set defined by (11) within a fixed time under
the influence of the negative V̇ . The convergence time can be
estimated using (12). This concludes the proof. �

Lemma 3: If ∀z ∈ R, then it holds that 0 ≤ z[sign(z) −
sat(z)] ≤ k−1

sat , with

sat(z) =

{
ksatz, − k−1

sat < z < k−1
sat

sign(z), else
.

III. CONTROLLER DESIGN

A. Fixed-time Convergence of Sliding Manifold

In order to achieve the fixed-time convergence rate, we
employ the following nonsingular sliding mode manifold [12]

Si,a = ηi,a + [ψ(ηi,a)η̇i,a]
qs/ps , (15)

with
ψ (ηi,a) =

(
αi,aη

ms/ns−ps/qs
i,a + βi,a

)−1

,

where αi,a and βi,a are positive constants; ms, ns, ps and qs
are positive odd integers, satisfying 2ps > qs > ps,ms > ns
and ms/ns−ps/qs > 1. For simplicity, ψ(ηi,a) is abbreviated
as ψi,a in subsequent contexts.

To satisfy (8), the initial condition for Si,a is defined as

Si,a ≤ Si,a (0) ≤ S̄i,a, (16)

where Si,a and S̄i,a represent the minimum and maximum
ranges of the initial state of Si,a, respectively.

Then, the following set is predefined for the sliding manifold

Si,a (t) ∈ Ωr
si,a, ∀t ≥ 0, (17)

where Ωr
si,a = {Si,a(t)| − kis,akiη,aρi,a(t) ≤ Si,a(t) ≤

kis,aρi,a(t)}, and kis,a is a positive gain satisfying 0 < kis,a <
1. In the next section, we will provide the proof that the PPC
objective can be achieved if the preset constraint set (17) can
be guaranteed.

To address the singularity issue associated with the sliding
manifold (15), the following function is employed:
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µ(η̇
qs/ps−1
i,a ) =

{
1, |η̇i,a| > σps/(qs−ps)

η̇
qs/ps−1
i,a /σ, |η̇i,a| ≤ σps/(qs−ps)

, (18)

where σ > 0. For simplicity, µ
(
η̇
qs/ps−1
i,a

)
is abbreviated as

µiη,a in subsequent contexts.
Define ξi,a(t) = Si,a(t)ρ−1

i,a (t)k−1
is,a, and transform the pre-

defined set (17) to ξi,a(t) ∈ (−kiη,a, 1). Then, the following
theorem outlines the first sliding-mode convergent process.

Theorem 1: For the error dynamics in (7), given the
initial condition (16), suppose a virtual control input ui =
[ui,x, ui,y]T = Jiτi. Consider the following distributed forma-
tion controller

ui,a = −ψ−1
i,a (ui1,a + ui2,a + ui3,a) , (19)

with

ui1,a = ψi,a(gi,a + δ̂im,asat(ζi2,a)),

ui2,a =
[
qs
ps

(ψi,aη̇i,a)
qs/ps−1

]−1[
η̇i,a − µiη,akis,aξi,a

×
(
ρ̇i,a −

kiξ,ak
2
iη,aρi,a

(1−ξi,a)(ξi,a+kiη,a)

) ]
,

ui3,a = −αi,a (ms/ns − ps/qs) ηms/ns−ps/qs−1
i,a (ψi,aη̇i,a)

2
,

updated by

˙̂
δim,a = κi1,aζi2,a (ξi,a, ηi,a, η̇i,a) sat (ζi2,a)− κi2,aδ̂3

im,a,
(20)

with positive control gains kiξ,a, κi1,a, κi2,a, and ζi2,a given
below (24). Then, Si,a will converge to the following small
residual set of (17) while t ≥ Tis,a,

Ωsi,a =
{
Si,a (t) |ξ

is,a
kis,aρi,a (t) ≤ Si,a ≤ ξ̄is,akis,aρi,a (t)

}
,

(21)
where ξ

is,a
and ξ̄is,a are provided in (30); Tis,a represents

the estimated time for the sliding surface Si,a to converge to
the specified region (21), and is given in (31). Meanwhile, the
predefined performance boundaries for Si,a(t) in (17) will be
guaranteed. Additionally, the actual wheel torque input can be
calculated as τi = J−1

i ui.
Remark 4: In the proposed controller in (19), it is evident

that, when η̇i,a = 0 and (18) is not employed, a singularity
issue arises in ui2,a. Conversely, with the utilization of (18),
if
∣∣η̇i,a∣∣ > σps/(qs−ps), we have µiη,a = 1, indicating that

(18) remains inactivated, and the singularity will not occur.
However, when

∣∣η̇i,a∣∣ ≤ σps/(qs−ps), and we substitute (18)
into ui2,a, the singularity issue can be effectively resolved.

Remark 5: According to the definitions of sets Ωri,a and
Ωrsi,a in (9) and (17), respectively, we observe that the pa-
rameters kiη,a and kis,a, along with ρi0,a within ρi,a (t), are
positive designable parameters directly related to the initial
conditions. Since we have complete knowledge of the initial
states within the formation system, kiη,a, kis,a and ρi0,a
offer us the flexibility to make appropriate selections. This
adaptability allows us to define the prescribed performance
boundary, ensuring the inclusion of the initial conditions for
both ηi,a and Si,a. Consequently, this arrangement guarantees
that ηi,a (0) resides within set Ωri,a, and Si,a (0) is situated
within the set Ωrsi,a.

Proof: Firstly, introduce the homeomorphism mapping from
ξis,a(t) to zi,a(t) as follows

zi,a = kiη,aξi,a[(1− ξi,a)(ξi,a + kiη,a)]
−1
. (22)

The time derivative of zi,a is żi,a =
(kiη,a+ξi,a

2)ξ̇i,akiη,a
[(1−ξi,a)(ξi,a+kiη,a)]2

.
Select the Lyapunov function candidate as

Viz,a = z2
i,a/2 + κ−1

i1,aδ̃
2
im,a/2, (23)

where κi1,a is a positive control gain, and δ̃im,a = δ̂im,a −
δim,a.

Differentiating (23) and applying the proposed controller
(19) produce

V̇iz,a = − µiη,a
kiξ,ak

4
iη,aξ

2
i,a(kiη,a+ξ2i,a)

[(1−ξi,a)(ξi,a+kiη,a)]4

− [1− µiη,a] ζi1,akis,aξi,aρ̇i,a

+ζi2,a

[
δi,a − δ̂im,asat (ζi2,a)

]
+ κ−1

i1,a
˙̂
δim,aδ̃im,a

≤ −µiη,akiξ,az4
i,a − [1− µiη,a] ζi1,akis,aξi,aρ̇i,a

+ζi2,a

[
δi,a − δ̂im,asat (ζi2,a)

]
+ κ−1

i1,a
˙̂
δim,aδ̃im,a,

(24)
where

ζi1,a =
k2iη,aξi,a(kiη,a+ξ2i,a)

[(1−ξi,a)(ξi,a+kiη,a)]3kis,aρi,a

ζi2,a = qs
ps

(ψi,aη̇i,a)
qs/ps−1 ψi,ak

2
iη,aξi,a(kiη,a+ξ2i,a)

[(1−ξi,a)(ξi,a+kiη,a)]3kis,aρi,a

.

From (10), we can obtain

0 ≤ −ρ̇i,a
ρi,a

= kiρ,a

[
1 +

ρi∞,a
(ρi0,a − ρi∞,a) e−kiρ,at

]−1

≤ kiρ,a.
(25)

In addition, the following inequality can be obtained

−ζi1,akis,aξi,aρ̇i,a =
−ρ̇i,a
ρi,a

z2
i,a

[
(2ξi,a+kiη,a−1)ξi,a
(1−ξi,a)(ξi,a+kiη,a) + 1

]
≤ kiρ,a

kiη,a
hi,a|zi,a|3 + kiρ,az

2
i,a,

(26)
where hi,a = 2max(1, kiη,a) + |1− kiη,a|.

Invoking Lemma 1 and Lemma 3, and substituting (20),
(25) and (26) into (24) produce

V̇iz,a ≤ [1− µiη,a]
(
kiρ,a
kiη,a

hi,a|zi,a|3 + kiρ,az
2
i,a

)
−µiη,akiξ,az4

i,a − κ
−1
i1,aκi2,aδ̂

3
im,aδ̃im,a + δim,ak

−1
sat

≤ [1− µiη,a]
(
kiρ,a
kiη,a

hi,a|zi,a|3 + kiρ,az
2
i,a

)
µiη,a

−µiη,akiξ,az4
i,a − κ

−1
i1,aκi2,abi1,aδ̃

4
im,a

+κ−1
i1,aκi2,abi2,aδ

4
im,a + δim,ak

−1
sat

≤ [1− µiη,a]
(
kiρ,a
kiη,a

hi,a|zi,a|3 + kiρ,az
2
i,a

)
− 1

2

[
µiη,akiξ,az

4
i,a + κ−1

i1,aκi2,abi1,aδ̃
4
im,a

]
− 1

4

[
µiη,akiξ,az

2λi,a
i,a + κ−1

i1,aκi2,abi1,aδ̃
2λi,a
im,a

]
+ Ci,a

≤ −χi1,aV 2
iz,a − χi2,aV

λi,a
iz,a + [1− µiη,a]

kiρ,a
kiη,a

hi,aV
3/2
iz,a

+ [1− µiη,a] kiρ,aViz,a + Ci,a,
(27)

where 0 < λi,a < 1; bi1,a and bi2,a are positive constants
satisfying −ς1(ς1 + ς2)

3 ≤ −bi1,aς41 + bi2,aς
4
2 with bi1,a =
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1−9/4$ and bi2,a = 3/4$3−1/12 , where $ > 0, ς1, ς2 ∈ R.
The other parameters in (27) can be calculated by

χi1,a = 2−1 min
{
µiη,akiξ,a, κ

−1
i1,aκi2,abi1,a

}
,

χi2,a = 2λi,a−2 min
{
µiη,akiξ,a, κ

−1
i1,aκi2,abi1,a

}
,

Ci,a = κ−1
i1,aκi2,abi2,aδ

4
im,a + 2−1 (kiξ,a + κi2,abi1,a)

+δim,ak
−1
sat.

(28)
While |η̇i,a| > σps/(qs−ps), resorting to Lemma 2, zi,a can

be driven to the following limited region in a fixed time∣∣∣∣ kiη,aξi,a
(1− ξi,a) (ξi,a + kiη,a)

∣∣∣∣ = |zi,a| ≤ zim,a ≤
√

2Vizm,a,

(29)
with

Vizm,a = max

{(
1− µiη,a

$i3,aχi1,a

)2

,
1− µiη,a

$i2,aχi1,a
,

(
C

$i1,aχi1,a

) 1
2

}
,

where $i1,a, $i2,a and $i3,a are positive parameters satisfy-
ing $i1,a +$i2,a +$i3,a ∈ (0, 1).

While µiη,a = 1 with |η̇i,a| > σps/(qs−ps) , zi,a will
converge to a small compact set bounded by zim,a ≤√

2[Ci,a/($i1,aχi1,a)]1/4 in a fixed time. While µiη,a ∈ (0, 1)
with η̇i,a 6= 0 , the fixed-time convergent rate of ηi,a can
still be guaranteed by µiη,a 6= 0. If η̇i,a = 0 and ηi,a 6= 0,
η̈i,a 6= 0 can be calculated by substituting the torque input
τi given by Theorem 1 into the error dynamics in (7). This
implies that η̇i,a will not remain at zero, and will transgress
|η̇i,a| < σps/(qs−ps) into |η̇i,a| ≥ σps/(qs−ps) within a finite

time tir,a, which can be made very small through selecting a
sufficiently small σ [12]. The detailed analysis can be found
in the Appendix.

From (29), we can solve the residual set for ξi,a as

ξ
is,a
≤ ξi,a (t) ≤ ξ̄is,a, t > Tis,a (30)

where

ξ
is,a

= 1
2

[(
1− kiη,a + kiη,az

−1
im,a

)
−
√(

1− kiη,a + kiη,az
−1
im,a

)2
+ 4kiη,a

]
ξ̄is,a = 1

2

[(
1− kiη,a − kiη,az−1

im,a

)
+
√(

1− kiη,a − kiη,az−1
im,a

)2
+ 4kiη,a

] .

Invoking Lemma 2, the settling time can be estimated by

Tis,a =

[
χi1,a

(
1−

3∑
c=1

$ic,a

)]−1

+[χi2,a (1− λi,a)]
−1

+ tir,a.

(31)

According to the definition of ξi,a, the sliding mode variable
Si,a is stabilized to the small residual set (17) within a
fixed time. Since Si,a(0) ∈ Ωr

si,a and Si,a(0) /∈ Ωsi,a, the
negative definite V̇iz,a can be guaranteed. Consequently, zi,a
is consistently kept away from infinity. Following the barrier
Lyapunov principle, ξi,a never reaches the preset boundaries,
and the sliding mode variable Si,a consistently evolves within
the predefined set (17). Therefore, the proof is completed. �

B. Fixed-time Convergence of Formation Error

In this section, we aim to establish that the formation
tracking error achieves the fixed-time convergence and adheres
to the prescribed performance constraint upon stabilizing Si,a.

Theorem 2: Under the initial condition (16), if the sliding
manifold Si,a defined in (15) can be driven into the set (17)
within a fixed time, then ηi,a can be stabilized to the following
residual set of (9) within another fixed-time Tiη,a for t ≥
Tis,a + Tiη,a

Ωiη,a =
{
ηi,a (t) |ξ

is,a
ρi,a (t) ≤ ηi,a (t) ≤ ξ̄is,aρi,a (t)

}
,

(32)
where Tiη,a is given in (42), representing the settling time
bound after t ≥ Tis,a. Furthermore, if the following inequality
holds

αiV,a =
(

1− k−1
iV,a

)ps/qs
min

{
ᾱi1,a, β̄i1,a

}
> 2kiρ,a, (33)

where ᾱi1,a = 2
ms+ns

2ns αi1,a, β̄i1,a = 2
ps+qs
2qs βi1,a and kiV,a ∈

(1, k−1
is,a) , then ηi,a never escapes from the preset boundary

in (9), ensuring the achievement of the PPC objective for the
desired formation motion.

Proof: i) Firstly, we establish the proof that the system
consistently adheres to the predefined performance constraint
(8) for any t ≥ 0.

Consider the Lyapunov function Viη,a = η2
i,a/2. Substitut-

ing (15) into the time derivative of Viη,a produces

V̇iη,a = −(1− Si,a/ηi,a)
ps
qs

(
ᾱi1,aV

ms+ns
2ns

iη,a + β̄i1,aV
ps+qs
2qs

iη,a

)
,

(34)
To elucidate the boundary of (1− Si,a/ηi,a), we introduce

the following set

Ωmid
i,a =

{
ηi,a(t)|ηi,a(t) ∈ Ωi,a, and ηi,a(t) /∈ Ωsmall

i,a

}
,
(35)

where Ωsmall
i,a = {ηi,a(t)| − kiV,akis,akiη,aρi,a(t) ≤ ηi,a(t) ≤

kiV,akis,aρi,a(t)}. Then, the condition Ωsmall
i,a ⊆ Ωi,a holds.

Recalling Theorem 1, the PPC constraint (17) for Si,a is
ensured by utilizing the designed distributed controller. If
the formation tracking error ηi,a satisfies the inequality of
−kiη,aρi,a(t) ≤ ηi,a(t) < −kiV,akis,akiη,aρi,a(t) < 0, then
the following inequality can be obtained

−Si,a (t)

−ηi,a (t)
≤ kis,akiη,aρi,a (t)

kiV,akis,akiη,aρi,a (t)
=

1

kiV,a
< 1. (36)

If ηi,a is restricted by 0 < kiV,akis,aρi,a(t) ≤ ηi,a(t) <
ρi,a(t), we have

Si,a (t)

ηi,a (t)
≤ kis,aρi,a (t)

kiV,akis,aρi,a (t)
=

1

kiV,a
< 1. (37)

From (36) and (37), one can observe that 1 − Si,a/ηi,a >
1− k−1

iV,a > 0 holds if ηi,a ∈ Ωmid
i,a . Then, we have V̇iη,a ≤ −

(
1− k−1

iV,a

) ps
qs
ᾱi1,aViη,a, Viη,a ≥ 1,

V̇iη,a ≤ −
(

1− k−1
iV,a

) ps
qs
β̄i1,aViη,a, Viη,a < 1,

(38)
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Fig. 3. Formation algorithm flowchart.

which, when combined with (33), implies that

|ηi,a (t)| =
√

2Viη,a ≤ |ηi,a (0)| e−
αiV,a

2 t < |ηi,a (0)| e−kiρ,at.
(39)

Considering the initial condition given in (8), if ηi,a(t) ex-
ponentially decays from Ωmid

i,a to Ωsmall
i,a with ηi,a(0) ∈ Ωmid

i,a ,
it will never violate the preset constraint (9), as indicated by
(39). In the case where ηi,a(0) ∈ Ωsmall

i,a , ηi,a(t) remains within
the set Ωsmall

i,a . Consequently, Theorem 1 consistently ensures
that ηi,a adheres to the PPC constraint (9).

ii) Now, we proceed with the subsequent proof to demon-
strate the fixed-time convergence rate of ηi,a.

Let Ωmid
iη,a = {ηi,a(t)|ηi,a(t) ∈ Ωi,a, and ηi,a(t) /∈ Ωiη,a}.

Similar to (36) and (37), when ηi,a(t) ∈ Ωmid
iη,a , we have

1− Si,a (t) η−1
i,a (t) > 1− kis,a > 0, t > Tis,a, (40)

and it follows that

V̇iη,a ≤ (1− kis,a)
ps/qs

[
−αi,aV

ms+ns
2ns

iη,a − βi,aV
ps+qs
2qs

iη,a

]
.

(41)
Invoking Lemma 2, the formation tracking error ηi,a can be

driven to Ωiη,a in a fixed time Tiη,a, as bounded by

Tiη,a = (1− kis,a)
− psqs

[
2ns

ᾱi1,a (ms − ns)
+

2qs
β̄i1,a (qs − ps)

]
.

(42)
The proof is now completed. �

IV. SIMULATION EXAMPLES

In this section, numerical examples are designed based on
the algorithm flowchart in Fig. 3 to verify the effectiveness of
the proposed leader-steered rigid shape formation framework
and the distributed control protocol. The multi-robot vehicles
system consists of one leader and three followers, and the
corresponding edge set is denoted by O(G) = {L, 1, 2, 3}. The
directed graph G representing the communication topology is
plotted in Fig. 4(a), and the edge set is denoted by S(G) =
{(L, 1), (L, 2), (1, 3), (2, 3)} . The ideal geometry is given in
Fig. 4(b), which is a rhombus with the side length of 10 m,
and the interior angle at the leader position is set as π/3 rad.
The vehicle parameters are given as follows: m = 11.8 kg,
Iz = 0.153 kg·m2, l = 0.1 m, h = 0.15 m, and r = 0.075 m.

The initial conditions are set as follows: [xL, yL, θL]T =
[0, 5, 0]T, [x1, y1, θ1]T = [−6, 9,−π/12]T, [x2, y2, θ2]T =

L

1

2

3

10m

10m

y

xo

L

1 2

3

(a) (b)

A

B

C

D
O

π

3

L

Fig. 4. Information of ideal formation. (a) The communication topology; (b)
Reference geometric parameters of rigid formation shapes.
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Fig. 5. Simulation results within 470 s. (a) Trajectories; (b) Formation
distances dji; (c) Formation angles ∆j .

[−3, 2,−π/9]T, and [x3, y3, θ3]T = [−10, 5,−π/3]T. The
linear velocity of the leader is vcL = 1 m/s, and the angular
velocity is given by:

ωL (t) =

 0, 0 < t < 20,
kω (t− 20) , 20 ≤ t < 320,
300kω, 320 ≤ t ≤ 470,

(43)

where kω = 6.98× 10−5. In addition, vc1(0) =vc2(0)=0.3m/s,
vc3(0)= 0.6 m/s, and ω1(0) = ω2(0) = ω3(0) = 0rad/s.

The performance constraint function is formulated as:

ρi,a (t) = (6− 0.3) exp (−0.1t) + 0.3, (44)

with kiη,a = 0.9.
The parameters are selected as follows, ms = 9, ns =

5, ps = 7, qs = 9, αi,a = 0.2 and βi,a = 0.3. The control gains
are set as kiξ,a = 0.05 and kis,a = 0.5. The parameters in the
adaptive law are assigned as κi1,a = 0.1 and κi2,a = 0.05 for
i = 1, 2, 3 and a = x, y. The value of σ is set to 0.01. The
simulation results are depicted in Figs. 5-7.

The trajectories in Fig. 5(a) demonstrate the successful
achievement of the proposed leader-steered rigid shape for-
mation defined in Definition 2. Notably, the leading vehi-
cle consistently maintains the foremost position during the
formation’s movements, steering both translational and rota-
tional motions of the cooperative team. The accuracy of the
formation geometry is assessed using two metrics, dji and
∆j , as illustrated in Figs. 5(b) and 5(c), respectively. In Fig.
5(b), dji represents the Euclidean distance between vehicles
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Fig. 6. Convergence of sliding manifolds and formation tracking errors,
along with predefined constraints. (a) Si,x, (b) Si,y , (c) ηi,x, (d) ηi,y .
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j and i, while the graphical description of ∆j is presented in
Fig. 5(c), representing the interior angle at vertex pj in the
formation. These results indicate that the proposed formation
protocols ensure the desired geometric distances and angles
for the rigid shape formation of the multi-robot vehicles.
Moreover, it is noteworthy that the cooperative team achieves
both translational and rotational movements without relying
on the consensus direction condition, as depicted in Fig. 5.

In Figs. 6(a) and 6(b), it is evident that the proposed
nonsingular sliding manifolds for the three following vehicles
consistently evolve within the predefined constraints, affirming
the effectiveness of the control protocol outlined in Theorem 1.
Adhering to the necessary condition specified in Theorem 2 for
the controller parameters, the formation tracking errors of the
following vehicles along the x-axis and y-axis are stabilized
to the neighborhood of zero. Moreover, the prescribed per-
formance constraints are rigorously maintained, as illustrated
in Figs. 6(c) and 6(d). The distributed control inputs for the
following vehicles are depicted in Fig. 7.

V. EXPERIMENT STUDIES

To validate the practical applicability of the proposed for-
mation control protocol, experiments are conducted using four
robotic vehicles, as depicted in Fig. 8. The control protocol
is implemented using a Jetson Nano B01 (with a 128-Core
Maxwell GPU, 4-Core ARM A57, 4GB 64Bit LPDDR4,
Linux) to facilitate communication with neighboring vehi-
cles via a 5G wireless network. At the vehicle’s bottom
layer controller, a core board with STM32 (F103RCT6) is

Router

Robotic Vehicles
Leader

Follower

Fig. 8. Experimental setup

0s 20s

40s 60s

Fig. 9. Formation process from a recorded video during the experiment.

employed to execute the calculated inputs on the vehicle
motors. The odometer, integrating the inertial measurement
unit (MPU6050) and the motor encoder, provided accurate
vehicle position and motion information. Notably, each robotic
vehicle is configured with identical settings.

A. Experimental Validation

The implementation of the directed graph for the communi-
cation topology is the same as in the simulations. Additionally,
due to space limitations in the experiments, the edge length
of the target formation geometry is set to 0.9 m, while other
formation and vehicle parameters remain consistent with those
used in the simulations in Section IV.

The initial conditions are specified as follows:
[xL, yL, θL]T = [0.52,−0.3, 0]T, [x1, y1, θ1]T =
[0.14, 0.45, 0]T, [x2, y2, θ2]T = [0.14,−0.95, 0]T, and
[x3, y3, θ3]T = [−1.12,−0.1, 0]T. The linear velocity of the
leader is set to vcL = 0.1 m/s, and the angular velocity is
given by:

ωL(t) =


0 t < 5,
0.00129π(t− 5) 5 ≤ t < 25,
0.00129π(45− t) 25 ≤ t < 45,
0 45 ≤ t ≤ 70.

(45)

In addition, vc1(0) =vc2(0)=vc3(0) = 0.1 m/s and ω1(0) =
ω2(0) = ω3(0) = 0 rad/s.

The performance constraint function is defined as:

ρi,a (t) = (0.7− 0.07) exp (−0.06t) + 0.07, (46)

with kiη,a = 1.2.
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Fig. 11. Convergence of sliding manifolds and formation tracking errors,
along with predefined constraints. (a) Si,x, (b) Si,y , (c) ηi,y , (d) ηi,y .
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Fig. 12. Control inputs of a single wheel of vehicle i. (a) τLif and τLir,
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Select ms = 9, ns = 5, ps = 7, qs = 9, αi,a = 0.1, and
βi,a = 0.15. The control gains are set as kiξ,a = 0.2 and
kis,a = 0.8. The parameters in the adaptive law are set by
κi1,a = 0.1 and κi2,a = 0.05 for i = 1, 2, 3 and a = x, y. The
value of σ is set to 0.01. The experiment results are plotted
in Figs. 9-12.

In Fig. 9, we present snapshots of the experimental forma-
tion process at t = 0 s, 20 s, 40 s, and 60 s. The trajectories
of the multi-vehicle formation system are illustrated in Fig.
10(a), while the evolution of the formation geometry is shown
in Figs. 10(b) and 10(c). Based on these experimental results,
it is evident that the controlled following vehicles perform the
ideal formation motions with the leading vehicle, forming the

Fig. 13. Experiment comparison results of formation tracking errors. (a)-(b)
Formation tracking errors for vehicle 1, (c)-(d) Formation tracking errors for
vehicle 2, (e)-(f) Formation tracking errors for vehicle 3.

desired geometry outlined in Definition 2. Additionally, the
experimental results in Fig. 11 indicate that the sliding mani-
folds and formation tracking errors consistently adhere to the
prescribed performance constraints, ultimately converging to a
small neighborhood of zero. Fig. 12 provides insights into the
actual torques applied to the wheels of the following vehicles
during the formation experiment. Hence, these experimental
results affirm the effectiveness of the leader-steered rigid shape
formation model and the fixed-time control algorithm for the
prescribed performance as proposed in this paper.

B. Comparison analysis

To evaluate the control performance, we conduct a compara-
tive analysis between our proposed control protocol (abbrevi-
ated as “FT-PPC” in the figures) and a conventional fixed-
time control method without prescribed performance [12]
(abbreviated as “FT” in the figures). The construction of the
conventional fixed-time controller is as follows:

ui,a = −ψ−1
i,a (ci1,a + ci2,a + ci3,a) , (47)

with

ci1,a =ψi,a

(
gi,a + δ̂im,a sat (ζi1,a)

)
,

ci2,a =− αi,a (ms/ns − ps/qs) ηm/n−p/q−1
i,a (ψi,aη̇i,a)

2
,

ci3,a =

[
qs
ps

(ψi,aη̇i,a)
qs/ps−1

]−1

η̇i,a

+
qs
ps

(ψi,a)
−qs/ps µ

(
η̇
qs/ps−1
i,a

)
η̇

1−qs/ps
i,a

(
αif,aS

mf/nf + βif,aS
pf/qf

)
,
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where the controller parameters are selected as ms = 9, ns =
5, ps = 7, qs = 9, αi,a = 0.07, and βi,a = 0.2.

The comparative results are depicted in Fig. 13. After
numerous attempts to fine-tune the parameters of the con-
ventional fixed-time controller, it becomes apparent that this
approach closely approximates the performance achieved by
our proposed control method while maintaining the formation
errors within the predefined boundaries. However, it is crucial
to note that, with the conventional fixed-time control method,
we cannot predict whether the formation errors will remain
within the predefined boundaries until we complete these
tuning attempts and obtain the results. This underscores the
advantage of our proposed control protocol, which has the
capability to predict and achieve specific control performance
criteria.

VI. CONCLUSION

This article introduces a novel formation framework and
a distributed fixed-time formation control protocol with the
prescribed performance. In contrast to conventional consensus-
based formation control, our proposed leader-steered rigid
shape formation aims to establish and maintain a consistent
invariant formation geometry. The entire formation shape
dynamically follows the leader’s motion, accommodating both
translational and rotational movements. By incorporating a
nonsingular fixed-time sliding manifold, our distributed for-
mation control protocol ensures the stabilization of formation
tracking errors within a fixed time, while also guaranteeing
adherence to preset constraints. Finally, the protocol success-
fully achieves the proposed leader-steered rigid shape forma-
tion. This comprehensive approach contributes to advancing
the field of multi-robot systems, offering enhanced control
precision and adaptability in real-world scenarios.

APPENDIX
ANALYSIS OF THE TRANSGRESS PROCESS OF η̇i,a

Invoking Lemma 2, if zi,a exits the region defined in
Vizm,a as given in (29), (27) can be further expressed as the
following inequality with either 0 < |η̇i,a| ≤ σps/qs−ps or
|η̇i,a| > σps/qs−ps ,

V̇iz,a ≤− (1−$i1,a −$i2,a −$i3,a)χi1,a︸ ︷︷ ︸
$i4,a>0

V 2
iz,a

− χi2,aV
λi,a
iz,a

≤−$i4,aViz,a,

(48)

which implies that zi,a ≤
√

2Viz,a ≤ zi,a(0)
√

2e−($i4,a/2)t,
and zi,a is bounded by a monotonically decreasing boundary.

Indeed, zi,a, which initially exhibits fixed-time convergence,
is intentionally modified to undergo a degeneration towards
asymptotic convergence. This modification serves to specifi-
cally illustrate that η̇i,a will not repeatedly enter the region
|η̇i,a| ≤ σps/qs−ps .

According to the homeomorphic mapping of Si,a, ξi,a
and zi,a, we can deduce that Si,a is also constrained by a

monotonically decreasing boundary. Referring to the definition
of Si,a in (15) with 0 < |η̇i,a| ≤ σps/qs−ps , we have

η̇i,a =
(
Si,aη

−1
i,a − 1

)ps/qs (
αi,a|ηi,a|ms/ns

+βi,a|ηi,a|ps/qs
)

sign (ηi,a) .
(49)

Now, we are ready to demonstrate that if η̇i,a is initially
in the region |η̇i,a| ≤ σps/qs−ps , it will exit this region and
will not return unless ηi,a has converged to a neighborhood of
zero.

Since the sliding manifold Si,a is an attractor, as demon-
strated in Theorem 1, both η̇i,a and ηi,a are attracted into
the region defined in (21). According to the sliding mode
scheme, Si,a converges before η̇i,a and ηi,a converge to the
neighborhood of zero. Considering a large ηi,a > 0 that has
not yet converged and a sufficient small σ, the converging Si,a,
bounded by a monotonically decreasing boundary according
to (48), will drive

(
Si,aη

−1
i,a − 1

)
to −1. This will result in a

monotonically decreasing negative η̇i,a, causing η̇i,a to exit
the small region |η̇i,a| ≤ σps/qs−ps with a large value of(
αi,a|ηi,a|ms/ns + βi,a|ηi,a|ps/qs

)
before ηi,a has converged

to the neighborhood of zero. Therefore, once η̇i,a exits the
region |η̇i,a| ≤ σps/qs−ps , it will not return to this region
until ηi,a has converged.

A similar result can also be obtained when ηi,a < 0. After
ηi,a and η̇i,a have been attracted into the neighborhood region
of the sliding manifold Si,a, η̇i,a will re-enter and consistently
remain within the region |η̇i,a| < σps/(qs−ps). This re-entry
occurs because the control objective has been achieved with
the converged ηi,a and sufficient small η̇i,a, simultaneously.
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