13,395 research outputs found

    Identifying Origin-Destination Trips from GPS Data – Application in Travel Time Reliability of Dedicated Trucks

    Get PDF
    The advancement of data collection technologies has brought an upsurge in GPS applications. For example, travel behaviour research has benefited from the integration of multiple sources of Global Positioning System (GPS) data. However, the effective use of such data is still impeded by the challenge in data processing. For instance, GPS data, despite providing detailed spatial movement information, do not label the starting and finishing points of a trip, especially for commercial trucks. Hence, there is a critical need to develop a trip identification method to effectively use the trajectory data provided by GPS without additional information. This paper focused on identifying trips from the raw GPS data. Specifically, a systematic method is proposed to extract trips on the basis of origin-destination (OD) pairs by using a 5-step procedure. An application was provided on estimating the performance of travel time reliability using three metrics based on the OD trips for each dedicated truck. The application showed that, in general, trucks on long-distance routes have less reliable travel times compared to trucks on short-distance routes. This paper provides an example of using GPS data, without further information, to study travel time for freight performance and similar needs of punctuality in logistics

    IDENTIFYING ORIGIN-DESTINATION TRIPS FROM GPS DATA – APPLICATION IN TRAVEL TIME RELIABILITY OF DEDICATED TRUCKS

    Get PDF
    The advancement of data collection technologies has brought an upsurge in GPS applications. For example, travel behaviour research has benefited from the integration of multiple sources of Global Positioning System (GPS) data. However, the effective use of such data is still impeded by the challenge in data processing. For instance, GPS data, despite providing detailed spatial movement information, do not label the starting and finishing points of a trip, especially for commercial trucks. Hence, there is a critical need to develop a trip identification method to effectively use the trajectory data provided by GPS without additional information. This paper focused on identifying trips from the raw GPS data. Specifically, a systematic method is proposed to extract trips on the basis of origin-destination (OD) pairs by using a 5-step procedure. An application was provided on estimating the performance of travel time reliability using three metrics based on the OD trips for each dedicated truck. The application showed that, in general, trucks on long-distance routes have less reliable travel times compared to trucks on short-distance routes. This paper provides an example of using GPS data, without further information, to study travel time for freight performance and similar needs of punctuality in logistics

    Theory of variational quantum simulation

    Full text link
    The variational method is a versatile tool for classical simulation of a variety of quantum systems. Great efforts have recently been devoted to its extension to quantum computing for efficiently solving static many-body problems and simulating real and imaginary time dynamics. In this work, we first review the conventional variational principles, including the Rayleigh-Ritz method for solving static problems, and the Dirac and Frenkel variational principle, the McLachlan's variational principle, and the time-dependent variational principle, for simulating real time dynamics. We focus on the simulation of dynamics and discuss the connections of the three variational principles. Previous works mainly focus on the unitary evolution of pure states. In this work, we introduce variational quantum simulation of mixed states under general stochastic evolution. We show how the results can be reduced to the pure state case with a correction term that takes accounts of global phase alignment. For variational simulation of imaginary time evolution, we also extend it to the mixed state scenario and discuss variational Gibbs state preparation. We further elaborate on the design of ansatz that is compatible with post-selection measurement and the implementation of the generalised variational algorithms with quantum circuits. Our work completes the theory of variational quantum simulation of general real and imaginary time evolution and it is applicable to near-term quantum hardware.Comment: 41 pages, accepted by Quantu
    corecore