202 research outputs found
Edge-Mediated Skyrmion Chain and Its Collective Dynamics in a Confined Geometry
The emergence of a topologically nontrivial vortex-like magnetic structure,
the magnetic skyrmion, has launched new concepts for memory devices. There,
extensive studies have theoretically demonstrated the ability to encode
information bits by using a chain of skyrmions in one-dimensional nanostripes.
Here, we report the first experimental observation of the skyrmion chain in
FeGe nanostripes by using high resolution Lorentz transmission electron
microscopy. Under an applied field normal to the nanostripes plane, we observe
that the helical ground states with distorted edge spins would evolves into
individual skyrmions, which assemble in the form of chain at low field and move
collectively into the center of nanostripes at elevated field. Such skyrmion
chain survives even as the width of nanostripe is much larger than the single
skyrmion size. These discovery demonstrates new way of skyrmion formation
through the edge effect, and might, in the long term, shed light on the
applications.Comment: 7 pages, 3 figure
Recommended from our members
Synthesis, Characterization, and Utilization of a Lignin-Based Adsorbent for Effective Removal of Azo Dye from Aqueous Solution
How to effectively remove toxic dyes from the industrial wastewater using a green low-cost lignocellulose-based adsorbent, such as lignin, has become a topic of great interest but remains quite challenging. In this study, cosolvent-enhanced lignocellulosic fractionation (CELF) pretreatment and Mannich reaction were combined to generate an aminated CELF lignin which is subsequently applied for removal of methylene blue and direct blue (DB) 1 dye from aqueous solution. 31P NMR was used to track the degree of amination, and an orthogonal design was applied to determine the relationship between the extent of amination and reaction parameters. The physicochemical, morphological, and thermal properties of the aminated CELF lignin were characterized to confirm the successful grafting of diethylenetriamine onto the lignin. The aminated CELF lignin proved to be an effective azo dye-adsorbent, demonstrating considerably enhanced dye decolorization, especially toward DB 1 dye (>90%). It had a maximum adsorption capacity of DB 1 dye of 502.7 mg/g, and the kinetic study suggested the adsorption process conformed to a pseudo-second-order kinetic model. The isotherm results also showed that the modified lignin-based adsorbent exhibited monolayer adsorption. The adsorbent properties were mainly attributed to the incorporated amine functionalities as well as the increased specific surface area of the aminated CELF lignin
Spin-density-wave transition in double-layer nickelate La3Ni2O7
Recently, a signature of high-temperature superconductivity above the liquid
nitrogen temperature (77 K) was reported for La3Ni2O7 under pressure. This
finding immediately stimulates intense interest in the possible high-Tc
superconducting mechanism in double-layer nickelates. Interestingly, the
pressure-dependent phase diagram inferred from transport measurements indicates
that superconductivity under high pressure emerges from the suppression of a
density-wave-like transition at ambient pressure, which is similar to
high-temperature superconductors. Therefore, clarifying the exact nature of the
density-wave-like transition is important for determining the mechanism of
superconductivity in double-layer nickelates. Here, nuclear magnetic resonance
(NMR) spectroscopy of 139La nuclei was performed to study the density-wave-like
transition in a single crystal of La3Ni2O7. The temperature-dependent 139La NMR
spectrum and nuclear spin-lattice relaxation rate (1/T1) provide unambiguous
evidence for a spin-density-wave (SDW) transition with a transition temperature
TSDW of ~ 150 K. Furthermore, the anisotropic splitting of the NMR spectrum
suggests a possible double spin stripe with magnetic moments along the c axis.
In addition, the present NMR measurements also revealed spatial inhomogeneity
of magnetism due to inner apical oxygen vacancies. All these results will be
helpful for building a connection between superconductivity and magnetic
interactions in double-layer nickelates.Comment: 14 pages, 4 figure
Identification of Poly (ADP-ribose) Polymerase-1 (PARP-1) as a Novel Kruppel-like Factor 8-interacting and -regulating Protein
Kruppel-like factor 8 (KLF8) regulates critical gene transcription and cellular events associated with cancer. However, KLF8-interacting proteins remain largely unidentified. Using co-immunoprecipitation (co-IP), mass spectrometry, and GST pulldown assays, we identified poly(ADP-ribose) polymerase-1(PARP-1) as a novel KLF8-interacting protein. Co-IP and Western blotting indicated that KLF8 is also a PARP-1 substrate. Mutation of the cysteines in the zinc finger domain of KLF8 abolished PARP-1 interaction. Surprisingly, immunofluorescent staining revealed a cytoplasmic mislocalization of KLF8 in PARP-1(-/-) cells or when the interaction was disrupted. This mislocalization was prevented by either PARP-1 re-expression or inhibition of CRM1-dependent nuclearexport. Interestingly, co-IP indicated competition between PARP-1 and CRM1 for KLF8 binding. Cycloheximide chase assay showed a decrease in the half-life of KLF8 protein when PARP-1 expression was suppressed or KLF8-PARP-1 interaction was disrupted. Ubiquitination assays implicated KLF8 as a target of ubiquitination that was significantly higher in PARP-1(-/-) cells. Promoter reporter assays and chromatin immunoprecipitation assays showed that KLF8 activation on the cyclin D1 promoter was markedly reduced when PARP-1 was deleted or inhibited or when KLF8-PARP-1 interaction was disrupted. Overall, this work has identified PARP-1 as a novel KLF8-binding and-regulating protein and provided new insights into the mechanisms underlying the regulation of KLF8 nuclear localization, stability, and functions
Solid Waste Gasification: Comparison of Single- and Multi-Staged Reactors
Interest in converting waste into renewable energy has increased recently due to concerns about sustainability and climate change. This solid waste is mainly derived from municipal solid waste (MSW), biomass residue, plastic waste, and their mixtures. Gasification is one commonly applied technology that can convert solid waste into usable gases, including H2, CO, CH4, and CO2. Single- and multi-staged reactors have been utilized for solid waste gasification. Comparison in reactor dimensions, operating factors (e.g., gasification agent, temperature, and feed composition), performance (e.g., syngas yield and selectivity), advantages, and disadvantages are discussed and summarized. Additionally, discussion will include economic and advanced catalysts which have been developed for use in solid waste gasification. The multi-staged reactor can not only be applied for gasification, but also for pyrolysis and torrefaction
Krüppel-like factor 8 promotes tumorigenic mammary stem cell induction by targeting miR-146a
The properties of stem cells can be induced during the epithelial to mesenchymal transition (EMT). The responsible molecular mechanisms, however, remain largely undefined. Here we report the identification of the microRNA-146a (miR-146a) as a common target of Krüppel-like factor 8 (KLF8) and TGF-β, both of which are known EMT-inducers. Upon KLF8 overexpression or TGF-β treatment, a significant portion of the MCF-10A cells gained stem cell traits as demonstrated by an increased expression of CD44(high)/CD24(low), activity of aldehyde dehydrogenase (ALDH), mammosphere formation and chemoresistance. Along with this change, the expression of miR-146a was highly upregulated in the cells. Importantly, we found that miR-146a was aberrantly co-overexpressed with KLF8 in a panel of invasive human breast cancer cell lines. Ectopic expression of KLF8 failed to induce the stem cell traits in the MCF-10A cells if the cells were pre-treated with miR-146a inhibitor, whereas overexpression of miR-146a in the MCF-10A cells alone was sufficient to induce the stem cell traits. Co-staining and luciferase reporter analyses indicated that miR-146a targets the 3’-UTR of the Notch signaling inhibitor NUMB for translational inhibition. Overexpression of KLF8 dramatically potentiated the tumorigenecity of MCF-10A cells expressing the H-Ras oncogene, which was accompanied by a loss of NUMB expression in the tumors. Taken together, this study identifies a novel role and mechanism for KLF8 in inducing pro-tumorigenic mammary stem cells via miR-146a potentially by activating Notch signaling. This mechanism could be exploited as a therapeutic target against drug resistance of breast cancer
Identification of Odorant-Binding Proteins (OBPs) and Functional Analysis of Phase-Related OBPs in the Migratory Locust
Olfactory plasticity, which is one of the major characteristics of density-dependent phase polyphenism, plays critical roles in the large-scale aggregation formation of Locusta migratoria. It is still unknown whether odorant-binding proteins (OBPs) are involved in phase-related olfactory plasticity of locusts, despite the confirmed involvement of several types of olfactory perception genes. In this study, we performed a large-scale search for OBPs and verified their expression patterns in the migratory locust. We identified 17 OBPs in the L. migratoria genome, of which 10 were novel, and we found their scattering distribution characteristics by mapping the genomic loci. Next, we revealed that these OBPs with close phylogenic relationships displayed similar tissue-specific expression profiles by a combined analysis of qRT-PCR and phylogenetic tree reconstruction. In all identified locust OBPs, seven OBPs showed differential mRNA expression levels in antenna tissue between gregarious and solitarious nymphs. Six of these seven OBPs displayed higher mRNA expression in the antennae of gregarious nymphs. The mRNA expression of LmigOBP2 and LmigOBP4 increased during gregarization and decreased during solitarization. RNAi experiments confirmed that only LmigOBP4 regulates the behavioral traits to affect gregarious behavior. These results demonstrated that OBPs also play important roles in the regulation of phase-related behavior of the locusts
- …