401 research outputs found

    A novel multipath-transmission supported software defined wireless network architecture

    Get PDF
    The inflexible management and operation of today\u27s wireless access networks cannot meet the increasingly growing specific requirements, such as high mobility and throughput, service differentiation, and high-level programmability. In this paper, we put forward a novel multipath-transmission supported software-defined wireless network architecture (MP-SDWN), with the aim of achieving seamless handover, throughput enhancement, and flow-level wireless transmission control as well as programmable interfaces. In particular, this research addresses the following issues: 1) for high mobility and throughput, multi-connection virtual access point is proposed to enable multiple transmission paths simultaneously over a set of access points for users and 2) wireless flow transmission rules and programmable interfaces are implemented into mac80211 subsystem to enable service differentiation and flow-level wireless transmission control. Moreover, the efficiency and flexibility of MP-SDWN are demonstrated in the performance evaluations conducted on a 802.11 based-testbed, and the experimental results show that compared to regular WiFi, our proposed MP-SDWN architecture achieves seamless handover and multifold throughput improvement, and supports flow-level wireless transmission control for different applications

    3D Dynamic Motion Planning for Robot-Assisted Cannula Flexible Needle Insertion into Soft Tissue

    Get PDF
    In robot-assisted needle-based medical procedures, insertion motion planning is a crucial aspect. 3D dynamic motion planning for a cannula flexible needle is challenging with regard to the nonholonomic motion of the needle tip, the presence of anatomic obstacles or sensitive organs in the needle path, as well as uncertainties due to the dynamic environment caused by the movements and deformations of the organs. The kinematics of the cannula flexible needle is calculated in this paper. Based on a rapid and robust static motion planning algorithm, referred to as greedy heuristic and reachability-guided rapidly-exploring random trees, a 3D dynamic motion planner is developed by using replanning. Aiming at the large detour problem, the convergence problem and the accuracy problem that replanning encounters, three novel strategies are proposed and integrated into the conventional replanning algorithm. Comparisons are made between algorithms with and without the strategies to verify their validity. Simulations showed that the proposed algorithm can overcome the above-noted problems to realize real-time replanning in a 3D dynamic environment, which is appropriate for intraoperative planning. © 2016 Author
    • …
    corecore