24,087 research outputs found

    Hidden-Charm Tetraquarks and Charged Zc States

    Full text link
    Experimentally several charged axial-vector hidden-charm states were reported. Within the framework of the color-magnetic interaction, we have systematically considered the mass spectrum of the hidden-charm and hidden-bottom tetraquark states. It is impossible to accommodate all the three charged states Zc(3900)Z_c(3900), Zc(4025)Z_c(4025) and Zc(4200)Z_c(4200) within the axial vector tetraquark spectrum simultaneously. Not all these three states are tetraquark candidates. Moreover, the eigenvector of the chromomagnetic interaction contains valuable information of the decay pattern of the tetraquark states. The dominant decay mode of the lowest axial vector tetraquark state is J/ψπJ/\psi \pi while its D∗DˉD^*\bar{D} and Dˉ∗D∗\bar{D}^*D^* modes are strongly suppressed, which is in contrast with the fact that the dominant decay mode of Zc(3900)Z_c(3900) and Zc(4025)Z_c(4025) is DˉD∗\bar{D}D^* and Dˉ∗D∗\bar{D}^*D^* respectively. We emphasize that all the available experimental information indicates that Zc(4200)Z_c(4200) is a very promising candidate of the lowest axial vector hidden-charm tetraquark state

    On q-deformed infinite-dimensional n-algebra

    Get PDF
    The qq-deformation of the infinite-dimensional nn-algebra is investigated. Based on the structure of the qq-deformed Virasoro-Witt algebra, we derive a nontrivial qq-deformed Virasoro-Witt nn-algebra which is nothing but a sh-nn-Lie algebra. Furthermore in terms of the pseud-differential operators on the quantum plane, we construct the (co)sine nn-algebra and the qq-deformed SDiff(T2)SDiff(T^2) nn-algebra. We prove that they are the sh-nn-Lie algebras for the case of even nn. An explicit physical realization of the (co)sine nn-algebra is given.Comment: 22 page

    Energy Spectrum Extraction and Optimal Imaging via Dual-Energy Material Decomposition

    Full text link
    Inferior soft-tissue contrast resolution is a major limitation of current CT scanners. The aim of the study is to improve the contrast resolution of CT scanners using dual-energy acquisition. Based on dual-energy material decomposition, the proposed method starts with extracting the outgoing energy spectrum by polychromatic forward projecting the material-selective images. The extracted spectrum is then reweighted to boost the soft-tissue contrast. A simulated water cylinder phantom with inserts that contain a series of six solutions of varying iodine concentration (range, 0-20 mg/mL) is used to evaluate the proposed method. Results show the root mean square error (RMSE) and mean energy difference between the extracted energy spectrum and the spectrum acquired using an energy-resolved photon counting detector(PCD), are 0.044 and 0.01 keV, respectively. Compared to the method using the standard energy-integrating detectors, dose normalized contrast-to-noise ratio (CNRD) for the proposed method are improved from 1 to 2.15 and from 1 to 1.88 for the 8 mg/mL and 16 mg/mL iodine concentration inserts, respectively. The results show CT image reconstructed using the proposed method is superior to the image reconstructed using the standard method that using an energy-integrating detector.Comment: 4 pages, 4 figures in The 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference Recor

    Engineering Photon Delocalization in a Rabi Dimer with a Dissipative Bath

    Full text link
    A Rabi dimer is used to model a recently reported circuit quantum electrodynamics system composed of two coupled transmission-line resonators with each coupled to one qubit. In this study, a phonon bath is adopted to mimic the multimode micromechanical resonators and is coupled to the qubits in the Rabi dimer. The dynamical behavior of the composite system is studied by the Dirac-Frenkel time-dependent variational principle combined with the multiple Davydov D2_{2} ans\"{a}tze. Initially all the photons are pumped into the left resonator, and the two qubits are in the down state coupled with the phonon vacuum. In the strong qubit-photon coupling regime, the photon dynamics can be engineered by tuning the qubit-bath coupling strength α\alpha and photon delocalization is achieved by increasing α\alpha. In the absence of dissipation, photons are localized in the initial resonator. Nevertheless, with moderate qubit-bath coupling, photons are delocalized with quasiequilibration of the photon population in two resonators at long times. In this case, high frequency bath modes are activated by interacting with depolarized qubits. For strong dissipation, photon delocalization is achieved via frequent photon-hopping within two resonators and the qubits are suppressed in their initial down state.Comment: 11 pages, 11 figure

    Spectral properties, generation order parameters and luminosities for spin-powered X-ray pulsars

    Full text link
    We show the spectral properties of 15 spin-powered X-ray pulsars, and the correlation between the average power-law photon index and spin-down rate. Generation order parameters (GOPs) based on polar-cap models are introduced to characterize the X-ray pulsars. We calculate three definitions of generation order parameters due to the different effects of magnetic and electric fields on photon absorption during cascade processes, and study the relations between the GOPs and spectral properties of X-ray pulsars. There exists a possible correlation between the photon index and GOP in our pulsar sample. Furthermore, we present a method due to the concept of GOPs to estimate the non-thermal X-ray luminosity for spin-powered pulsars. Then X-ray luminosity is calculated in the context of our polar-cap accelerator model which is well consistent with the most observed X-ray pulsar data. The ratio between X-ray luminosity estimated by our method and the pulsar's spin-down power is well consistent with the LX∼10−3LsdL_{\rm X}\sim 10^{-3}L_{\rm sd} feature.Comment: 20 pages, 8 figures, 1 table, revised version for the publication in Ap
    • …
    corecore