149 research outputs found
Coherent manipulation of spin wave vector for polarization of photons in an atomic ensemble
We experimentally demonstrate the manipulation of two-orthogonal components
of a spin wave in an atomic ensemble. Based on Raman two-photon transition and
Larmor spin precession induced by magnetic field pulses, the coherent rotations
between the two components of the spin wave is controllably achieved.
Successively, the two manipulated spin-wave components are mapped into two
orthogonal polarized optical emissions, respectively. By measuring Ramsey
fringes of the retrieved optical signals, the \pi/2-pulse fidelity of ~96% is
obtained. The presented manipulation scheme can be used to build an arbitrary
rotation for qubit operations in quantum information processing based on atomic
ensembles
Quantum Interference of Stored Coherent Spin-wave Excitations in a Two-channel Memory
Quantum memories are essential elements in long-distance quantum networks and
quantum computation. Significant advances have been achieved in demonstrating
relative long-lived single-channel memory at single-photon level in cold atomic
media. However, the qubit memory corresponding to store two-channel spin-wave
excitations (SWEs) still faces challenges, including the limitations resulting
from Larmor procession, fluctuating ambient magnetic field, and
manipulation/measurement of the relative phase between the two channels. Here,
we demonstrate a two-channel memory scheme in an ideal tripod atomic system, in
which the total readout signal exhibits either constructive or destructive
interference when the two-channel SWEs are retrieved by two reading beams with
a controllable relative phase. Experimental result indicates quantum coherence
between the stored SWEs. Based on such phase-sensitive storage/retrieval
scheme, measurements of the relative phase between the two SWEs and Rabi
oscillation, as well as elimination of the collapse and revival of the readout
signal, are experimentally demonstrated
A VANET privacy protection scheme based on fair blind signature and secret sharing algorithm
Vehicular ad hoc network (VANET) is a traffic application of wireless sensor network, which is also a new mobile ad hoc networks composed of vehicle nodes, roadside units, service providers and other components. In VANET, data is transmitted by the wireless channel, which is subject to potential threat like information leak and data attack due to the openness and sensitivity of the auto organization network itself. How to ensure the identity privacy and trusted communication in VANETs is the key issue to be solved urgently. The existing work
usually uses authentication mechanism, but the user’s privacy disclosure is inevitable during the authentication process. Some anonymous authentication schemes have been proposed to solve the problem of privacy disclosure regardless of considering anonymity abuse. However, anonymity abuse is also severe in VANET. In view of the above problems, this paper proposes a scheme based on fair blind signature and secret sharing algorithm. By security analysis and
experiment, the scheme has been proved to be higher anonymity and higher efficiency
Trend of disease burden and risk factors of breast cancer in developing countries and territories, from 1990 to 2019: Results from the Global Burden of Disease Study 2019
BackgroundThe incidence, mortality, burden of disability-adjusted life years (DALYs), and attributable risk factors of breast cancer vary significantly by country or region, particularly between developing and developed countries. This study aimed to analyze breast cancer development trends in developing countries based on the influence of the different sociodemographic indices (SDIs) and World Bank (WB) income-level disease data from 1990 to 2019.MethodsData on the annual incidence, mortality, DALY, years of life lost (YLL) prematurely, years lived with disability (YLD), and age-standardized rate (ASR) of breast cancer from 1990 to 2019 in different countries and territories were obtained from the 2019 Global Burden of Disease (GBD) Study. A comparative risk assessment (CRA) framework was used to analyze the general risk factors.ResultsThe global age-standardized incidence rate (ASIR) gradually increased from 21.44 per 100,000 population in 1990 to 24.17 per 100,000 population in 2019. It rose precipitously to 2.91- and 2.49-fold, respectively, for countries with middle SDIs and low-middle SDIs. The ASIR of breast cancer was increasing in the lower-middle-income levels in WB, with an estimated annual percentage change (EAPC) of 0.29 [95% uncertainty interval (UI): 0.20–0.37] and reduced income (EAPC of 0.59 [95% UI: 0.53–0.65]). The Solomon Islands and the United Arab Emirates observed the most significant increase in the magnitude of deaths from breast cancer cases. Compared to the death cases of 1990, percentage changes increased separately by 1,169 and 851%. Compared to developed areas, breast cancer-related deaths increased rapidly in developing regions, especially among the middle-aged and elderly groups. Meanwhile, the long-term burden of breast cancer was ever expanding. Of all the GBD regions, Oceania had the youngest age distribution. The deaths in the young and middle-aged groups accounted for 69% in 1990 and 72% in 2019. Percentage changes in deaths from the seven risk factors in low- to middle-SDI regions increased significantly over time across all age groups. However, a diet with high red meat and high body mass index (BMI) accounted for the most considerable increase in the magnitude.ConclusionPublic health policy regarding breast cancer is fundamental in low- and medium-income countries. The development and adoption of cost-effective screening and therapeutic solutions, the mitigation of risk factors, and the establishment of a cancer infrastructure are essential
Orexin A Affects INS-1 Rat Insulinoma Cell Proliferation via Orexin Receptor 1 and the AKT Signaling Pathway
Our aim is to investigate the role of the AKT/PKB (protein kinase B) signaling pathway acting via orexin receptor 1 (OX1R) and the effects of orexin A (OXA) on cell proliferation in the insulin-secreting beta-cell line (INS-1 cells). Rat INS-1 cells were exposed to different concentrations of OXA in vitro and treated with OX1R antagonist (SB334867), PI3K antagonist (wortmannin), AKT antagonist (PF-04691502), or negative control. INS-1 amount of cell proliferation, viability and apoptosis, insulin secretion, OX1R protein expression, caspase-3 activity, and AKT protein levels were determined. We report that OXA (10-10 to 10-6 M) stimulates INS-1 cell proliferation and viability, reduces the proapoptotic activity of caspase-3 to protect against apoptotic cell death, and increases insulin secretion. Additionally, AKT phosphorylation was stimulated by OXA (10-10 to 10-6 M). However, the OX1R antagonist SB334867 (10-6 M), the PI3K antagonist wortmannin (10-8 M), the AKT antagonist PF-04691502 (10-6 M), or the combination of both abolished the effects of OXA to a certain extent. These results suggest that the upregulation of OXA-OX1R mediated by AKT activation may inhibit cell apoptosis and promote cell proliferation in INS-1 cells. This finding provides functional evidence of the biological actions of OXA in rat insulinoma cells
First-principles study of oxygen vacancy defects in orthorhombic HfZrO/SiO/Si gate stack
The gate defect of the ferroelectric HfO-based Si field-effect transistor
(Si FeFET) plays a dominant role in its reliability issue. The first-principles
calculations are an effective method for the atomic-scale understanding of gate
defects. However, the first-principles study on the defects of FeFET gate
stacks, i.e., metal/orthorhombic-HfZrO/SiO/Si
structure, has not been reported so far. The key challenge is the construction
of metal/orthorhombic-HfZrO/SiO/Si gate stack models.
Here, we use the HfZrO(130) high-index crystal face as the
orthorhombic ferroelectric layer and construct a robust atomic structure of the
orthorhombic-HfZrO/SiO/Si gate stack without any gap
states. Its high structural stability is ascribed to the insulated interface.
The calculated band offsets show that this gate structure is of the type-I band
alignment. Furthermore, the formation energies and charge transition levels
(CTLs) of defects reveal that the oxygen vacancy defects are more favorable to
form compared with other defects such as oxygen interstitial and Hf/Zr vacancy,
and their CTLs are mainly localized near the Si conduction band minimum and
valence band maximum, in agreement with the reported experimental results. The
oxygen vacancy defects are responsible for charge trapping/de-trapping behavior
in Si FeFET. This work provides an insight into gate defects and paves the way
to carry out the first-principles study of ferroelectric HfO-based Si
FeFET.Comment: 18 pages, 5 figure
Improved performance and stability of perovskite solar modules by interface modulating with graphene oxide crosslinked CsPbBr3quantum dots
Perovskite solar cells (PSCs) are one of the most prominent photovoltaic technologies. However, PSCs still encounter great challenges of scaling up from laboratorial cells to industrial modules without serious performance loss while maintaining excellent long-term stability, owing to the resistive losses and extra instability factors that scale quadratically with the device area. Here, we manifest a concept of multifunctional interface modulation for highly efficient and stable perovskite solar modules (PSMs). The advisably designed multifunctional interface modulator GO/QD crosslinks the CsPbBr3 perovskite quantum dots (QDs) on the conductive graphene oxide (GO) surfaces, which significantly improve charge transport and energy band alignment at the perovskite/hole transporting layer interface to reduce the charge transport resistance while passivating the surface defects of the perovskite to inhibit carrier recombination resistive losses. Moreover, the GO/QD interlayer acts as a robust permeation barrier that modulates the undesirable interfacial ion and moisture diffusion. Consequently, we adopt a scalable vacuum flash-assisted solution processing (VASP) method to achieve a certified stabilized power output efficiency of 17.85% (lab-measured champion efficiency of 18.55%) for the mini-modules. The encapsulated PSMs achieve over 90% of their initial efficiency after continuous operation under 1 sun illumination and the damp heat test at 85 °C, respectively. This journal isThe authors acknowledge financial from the National Natural Science Foundation of China (21875081, 91733301, and 51972251), the Chinese National 1000-Talent-Plan program, the Foundation of State Key Laboratory of Coal Conversion (Grant No. J18-19-913), and the Frontier Project of the Application Foundation of Wuhan Science and Technology Plan Project (2020010601012202)
Driver steering behaviour modelling based on neuromuscular dynamics and multi‑task time‑series transformer
Driver steering intention prediction provides an augmented solution to the design of an onboard collaboration mechanism between human driver and intelligent vehicle. In this study, a multi-task sequential learning framework is developed to predict future steering torques and steering postures based on upper limb neuromuscular electromyography signals. The joint representation learning for driving postures and steering intention provides an in-depth understanding and accurate modelling of driving steering behaviours. Regarding different testing scenarios, two driving modes, namely, both-hand and single-right-hand modes, are studied. For each driving mode, three different driving postures are further evaluated. Next, a multi-task time-series transformer network (MTS-Trans) is developed to predict the future steering torques and driving postures based on the multi-variate sequential input and the self-attention mechanism. To evaluate the multi-task learning performance and information-sharing characteristics within the network, four distinct two-branch network architectures are evaluated. Empirical validation is conducted through a driving simulator-based experiment, encompassing 21 participants. The proposed model achieves accurate prediction results on future steering torque prediction as well as driving posture recognition for both two-hand and single-hand driving modes. These findings hold significant promise for the advancement of driver steering assistance systems, fostering mutual comprehension and synergy between human drivers and intelligent vehicles
An n-of-1 Trial Service in Clinical Practice: Testing the Effectiveness of Liuwei Dihuang Decoction for Kidney-Yin Deficiency Syndrome
Objective. To describe the clinical use of n-of-1 RCTs for kidney-Yin deficiency syndrome that is a traditional Chinese medicine syndrome in publicly clinical practice in China. Methods. Our study included patients with kidney-Yin deficiency syndrome, using a within-patient, randomized, double-blind, crossover comparison of Liuwei Dihuang decoction versus placebo. Outcome Measures. Primary outcome measures included number of individual completion rates, response rate, and post-n-of-1 RCTs decisions. Secondary measures were the whole group score of individual Likert scale, SF-36 questionnaire. Results. Fifty patients were recruited and 3 were not completed. Forty-seven patients completed 3 pairs of periods, 3 (6.38%) were responders, 28 (59.57%) were nonresponders, and 16 (34.05%) were possible responders. Doctors and patients used the trial results to making decision. Three responders stayed on the medication management, 28 nonresponders ceased the LDD, 7 patients of the 16 possible responders could not give clear decision, and the others kept the same medication station. Among the whole group, neither the individual Likert score nor the SF-36 showed any statistical differences between LDD and placebo. Discussion. More attention should be paid to choose experienced TCM doctor as investigator and keep the simulant same with test medication in n-of-1 RCTs of TCM and sufficiently biological half-life period of Chinese medicine compound
- …