26 research outputs found

    Monoacylglycerol as a metabolic coupling factor in glucose-stimulated insulin secretion

    Full text link
    Les cellules beta pancrĂ©atiques sĂ©crĂštent l’insuline lors d’une augmentation post-prandiale du glucose dans le sang. Ce processus essentiel est contrĂŽlĂ© par des facteurs physiologiques, nutritionnels et pathologiques. D’autres sources d’énergie, comme les acides aminĂ©s (leucine et glutamine) ou les acides gras potentialisent la sĂ©crĂ©tion d’insuline. Une sĂ©crĂ©tion d’insuline insuffisante au besoin du corps dĂ©clanche le diabĂšte. Le rĂŽle que joue l’augmentation du calcium intracellulaire et les canaux K+/ATP dans la sĂ©crĂ©tion d’insuline est bien connu. Bien que le mĂ©canisme exact de la potentialisation de la sĂ©crĂ©tion d’insuline par les lipides est inconnu, le cycle GlycĂ©rolipides/Acides gras (GL/FFA) et son segment lipolytique ont Ă©tĂ© reconnu comme un composant essentiel de la potentialisation lipidique de la sĂ©crĂ©tion d’insuline. Le diacylglycĂ©rol, provenant de la lipolyse, a Ă©tĂ© proposĂ© comme un signal lipidique important d’amplification. Cependant, l’hydrolyse des triglycĂ©rides et des diacylglycĂ©rides a Ă©tĂ© dĂ©montrĂ©e essentielle pour la sĂ©crĂ©tion d’insuline stimulĂ©e par le glucose, en suggĂ©rant un rĂŽle du monoacylglycĂ©rol (MAG) dans ce processus. Dans cette Ă©tude, on dĂ©montre que la rĂ©duction de la sĂ©crĂ©tion d’insuline stimulĂ©e par le glucose, lors d’une inhibition de la lipolyse, est restaurĂ©e par l’addition de MAG. Dans les cellules beta pancrĂ©atiques, le niveau de MAG augmente en prĂ©sence des concentrations Ă©levĂ©es du glucose, et Ă©galement lorsqu’on inhibe l’enzyme MAG hydrolase abhydrolase-6 (ABHD6) avec l’inhibiteur spĂ©cifique WWL70. L’analyse lipidomique a dĂ©montrĂ© qu’aprĂšs la stimulation des cellules beta pancrĂ©atiques avec le glucose et aussi avec le WWL70, l’espĂšce la plus accumulĂ©e de MAG Ă©tait le 1-stearoylglycĂ©rol (1-SG). L’addition de 1-SG, de 1-palmitoylglycĂ©rol (1-PG) ou de WWL70 augmente la sĂ©crĂ©tion d’insuline stimulĂ©e par le glucose, et cette augmentation est indĂ©pendante de la gĂ©nĂ©ration de acides gras Ă  partir de MAG. Cela suggĂšre que le MAG est un signal lipidique pour la potentialisation de la sĂ©crĂ©tion d’insuline stimulĂ©e par le glucose. De plus, la surexpression du gĂšne d’ABHD6 dans les cellules INS832/13 cause une rĂ©duction de la sĂ©crĂ©tion d’insuline, due probablement Ă  la diminution des niveaux intracellulaire de MAG. Avec le but de comprendre le mĂ©canisme molĂ©culaire impliquĂ© dans la potentialisation de la sĂ©crĂ©tion d’insuline par le MAG, on a bloquĂ© l’action du rĂ©cepteur vanilloid-1 (TRPV1) liant le MAG par l’agent pharmacologiste, AMG9810. Le traitement des cellules beta pancrĂ©atique par AMG9810 entraĂźne une diminution de la potentialisation de la sĂ©crĂ©tion de l’insuline induite par le MAG. Il est a noter que le MAG pourrait activer TRPV1 par une liaison physique dans la membrane cellulaire interne; ce qui entraĂźnerai l’entrĂ©e du calcium dans la cellule, et ensuite la stimulation de l’exocytose des granules Ă  insuline. En soutien de cette hypothĂšse, on a trouvĂ© une diminution du calcium intracellulaire lorsqu’on traite au AMG9810 des cellules beta pancrĂ©atique de rat (provenant des Ăźlots dispersĂ©s) stimulĂ©es au glucose et au WWL70. L’ensemble des rĂ©sultats suggĂšre que le MAG est un mĂ©diateur de la potentialisation lipidique de la sĂ©crĂ©tion d’insuline stimulĂ©e par le glucose. Vu que l’inhibition pharmacologique d’ABHD6 augmente la sĂ©crĂ©tion d’insuline, on pourra conclure que cette enzyme reprĂ©sente une cible thĂ©rapeutique potentielle dans le dĂ©veloppement des mĂ©dicaments anti-diabĂ©tiques, visant une augmentation de la sĂ©crĂ©tion d’insuline.Insulin secretion by the pancreatic b-cell in response to post-prandial increase in blood glucose levels is an essential physiological process that is governed by cellular, nutritional and pathological factors. Other fuels including amino acids like leucine and glutamine and also fatty acids contribute to further augment insulin secretion. Failure to secrete adequate amount of insulin according to the changing demands of the body by b-cell is a key determinant of diabetes. The role played by the elevated Ca2+ influx and K+-ATP channels in insulin secretion is well known. Even though the precise mechanism of the lipid amplification of insulin secretion and the involved molecular signals are not clear, Glycerolipid/Free fatty acid (GL/FFA) cycle and its lipolytic segment have been recognized as essential components in the lipid amplification pathway of insulin secretion. Diacylglycerol produced by lipolysis was proposed as an important lipid amplification signal. However, hydrolysis of triglycerides and also of diacylglycerols is shown to be essential for glucose stimulated insulin secretion (GSIS), indicating a possible role for monoacylglycerol (MAG) in this process. In the present study we demonstrate that the obliterated GSIS due to lipolysis inhibition in b-cells can be restored by providing exogenous MAG. In the b-cells MAG levels increase significantly in the presence of high glucose concentration and specific inhibition of the major MAG hydrolase, abhydrolase-6 (ABHD6), in b-cells and islets with WWL70 leads to accumulation of MAG with concomitant increase in insulin secretion. Lipidomics analysis indicated that the major MAG species that is elevated by high glucose as well as WWL70 addition is 1-stearoylglycerol (1-SG). Exogenously added 1-SG and also 1-palmitoylglycerol (1-PG) strongly enhanced GSIS and this augmentation is not dependent on the generation of FFA by these MAGs. This indicates that MAG is a potential candidate for being the lipid signal for GSIS amplification. Further evidence for this was provided by the observation that overexpression of the MAG hydrolase ABHD6 in INS832/13 cells, resulted in decreased insulin secretion, probably owing to the lowered MAG level inside the b-cells. Pharmacological studies using AMG9810, a specific antagonist of transient receptor potential vanilloid-1 (TRPV1) receptor that binds MAG, revealed that a blockade of TRPV1 strongly attenuated the MAG-augmented insulin secretion. Since MAG is a potential activator of TRPV1, it is likely that MAG binds on the inner surface of the cell membrane to TRPV1, which in turn triggers rapid influx of Ca2+ thereby promoting insulin granule exocytosis. Thus, AMG9810 was found to lower Ca2+ influx into dispersed rat islet cells that was induced by high glucose and also WWL70. These results collectively suggest that MAG is the potential mediator of the lipid amplification of glucose-stimulated insulin secretion. Our results also indicate that pharmacological intervening at the ABHD6 hydrolysis step enhances insulin secretion; this enzyme protein can be a promising thrapeutic target for the development of anti-diabetic drugs that promote insulin secretion

    Detection of copy number variations and their effects in Chinese bulls

    Get PDF
    BACKGROUND: Copy number variations (CNVs) are a main source of genomic structural variations underlying animal evolution and production traits. Here, with one pure-blooded Angus bull as reference, we describe a genome-wide analysis of CNVs based on comparative genomic hybridization arrays in 29 Chinese domesticated bulls and examined their effects on gene expression and cattle growth traits. RESULTS: We identified 486 copy number variable regions (CNVRs), covering 2.45% of the bovine genome, in 24 taurine (Bos taurus), together with 161 ones in 2 yaks (Bos grunniens) and 163 ones in 3 buffaloes (Bubalus bubalis). Totally, we discovered 605 integrated CNVRs, with more “loss” events than both “gain” and “both” ones, and clearly clustered them into three cattle groups. Interestingly, we confirmed their uneven distributions across chromosomes, and the differences of mitochondrion DNA copy number (gain: taurine, loss: yak & buffalo). Furthermore, we confirmed approximately 41.8% (253/605) and 70.6% (427/605) CNVRs span cattle genes and quantitative trait loci (QTLs), respectively. Finally, we confirmed 6 CNVRs in 9 chosen ones by using quantitative PCR, and further demonstrated that CNVR22 had significantly negative effects on expression of PLA2G2D gene, and both CNVR22 and CNVR310 were associated with body measurements in Chinese cattle, suggesting their key effects on gene expression and cattle traits. CONCLUSIONS: The results advanced our understanding of CNV as an important genomic structural variation in taurine, yak and buffalo. This study provides a highly valuable resource for Chinese cattle’s evolution and breeding researches. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2164-15-480) contains supplementary material, which is available to authorized users

    α/ÎČ-Hydrolase Domain 6 Deletion Induces Adipose Browning and Prevents Obesity and Type 2 Diabetes

    Get PDF
    SummarySuppression of α/ÎČ-domain hydrolase-6 (ABHD6), a monoacylglycerol (MAG) hydrolase, promotes glucose-stimulated insulin secretion by pancreatic ÎČ cells. We report here that high-fat-diet-fed ABHD6-KO mice show modestly reduced food intake, decreased body weight gain and glycemia, improved glucose tolerance and insulin sensitivity, and enhanced locomotor activity. ABHD6-KO mice also show increased energy expenditure, cold-induced thermogenesis, brown adipose UCP1 expression, fatty acid oxidation, and white adipose browning. Adipose browning and cold-induced thermogenesis are replicated by the ABHD6 inhibitor WWL70 and by antisense oligonucleotides targeting ABHD6. Our evidence suggests that one mechanism by which the lipolysis derived 1-MAG signals intrinsic and cell-autonomous adipose browning is via PPARα and PPARÎł activation, and that ABHD6 regulates adipose browning by controlling signal competent 1-MAG levels. Thus, ABHD6 regulates energy homeostasis, brown adipose function, and white adipose browning and is a potential therapeutic target for obesity and type 2 diabetes

    Adipose tissue hyaluronan production improves systemic glucose homeostasis and primes adipocytes for CL 316,243-stimulated lipolysis

    Get PDF
    Plasma hyaluronan (HA) increases systemically in type 2 diabetes (T2D) and the HA synthesis inhibitor, 4-Methylumbelliferone, has been proposed to treat the disease. However, HA is also implicated in normal physiology. Therefore, we generated a Hyaluronan Synthase 2 transgenic mouse line, driven by a tet-response element promoter to understand the role of HA in systemic metabolism. To our surprise, adipocyte-specific overproduction of HA leads to smaller adipocytes and protects mice from high-fat-high-sucrose-diet-induced obesity and glucose intolerance. Adipocytes also have more free glycerol that can be released upon beta3 adrenergic stimulation. Improvements in glucose tolerance were not linked to increased plasma HA. Instead, an HA-driven systemic substrate redistribution and adipose tissue-liver crosstalk contributes to the systemic glucose improvements. In summary, we demonstrate an unexpected improvement in glucose metabolism as a consequence of HA overproduction in adipose tissue, which argues against the use of systemic HA synthesis inhibitors to treat obesity and T2D

    Adipocyte mesenchymal transition contributes to mammary tumor progression

    Get PDF
    Obesity is associated with increased cancer incidence and progression. However, the relationship between adiposity and cancer remains poorly understood at the mechanistic level. Here, we report that adipocytes from tumor-invasive mammary fat undergo de-differentiation to fibroblast-like precursor cells during tumor progression and integrate into the tumor microenvironment. Single-cell sequencing reveals that these de-differentiated adipocytes lose their original identities and transform into multiple cell types, including myofibroblast- and macrophage-like cells, with their characteristic features involved in immune response, inflammation, and extracellular matrix remodeling. The de-differentiated cells are metabolically distinct from tumor-associated fibroblasts but exhibit comparable effects on tumor cell proliferation. Inducing de-differentiation by Xbp1s overexpression promotes tumor progression despite lower adiposity. In contrast, promoting lipid-storage capacity in adipocytes through MitoNEET overexpression curbs tumor growth despite greater adiposity. Collectively, the metabolic interplay between tumor cells and adipocytes induces adipocyte mesenchymal transition and contributes to reconfigure the stroma into a more tumor-friendly microenvironment

    Monoacylglycerol, alpha/beta-hydrolase domain-6, and the regulation of insulin secretion and energy metabolism

    Full text link
    Le cycle glycĂ©rolipides/acides gras libres (GL/FFA) est une voie mĂ©tabolique clĂ© qui relie le mĂ©tabolisme du glucose et des acides gras et il est composĂ© de deux processus mĂ©taboliques appelĂ©s lipogenĂšse et lipolyse. Le cycle GL/FFA, en particulier la lipolyse des triglycĂ©rides, gĂ©nĂšre diverses molĂ©cules de signalisation pour rĂ©guler la sĂ©crĂ©tion d'insuline dans les cellules bĂȘta pancrĂ©atiques et la thermogenĂšse non-frissonnante dans les adipocytes. Actuellement, les lipides provenant spĂ©cifiquement de la lipolyse impliquĂ©s dans ce processus sont mal connus. L’hydrolyse des triglycĂ©rides dans les cellules ÎČ est rĂ©alisĂ©e par les actions successives de la triglycĂ©ride lipase adipocytaire pour produire le diacylglycĂ©rol, ensuite par la lipase hormono-sensible pour produire le monoacylglycĂ©rol (MAG) et enfin par la MAG lipase (MAGL) qui relĂąche du glycerol et des acides gras. Dans les cellules bĂȘta, la MAGL classique est trĂšs peu exprimĂ©e et cette Ă©tude a dĂ©montrĂ© que l’hydrolyse de MAG dans les cellules ÎČ est principalement rĂ©alisĂ©e par l'α/ÎČ-Hydrolase Domain-6 (ABHD6) nouvellement identifiĂ©e. L’inhibition d’ABHD6 par son inhibiteur spĂ©cifique WWL70, conduit Ă  une accumulation des 1-MAG Ă  longues chaines saturĂ©es Ă  l'intĂ©rieur des cellules, accompagnĂ©e d’une augmentation de la sĂ©crĂ©tion d'insuline stimulĂ©e par le glucose (GSIS). Baisser les niveaux de MAG en surexprimant ABHD6 dans la lignĂ©e cellulaire bĂȘta INS832/13 rĂ©duit la GSIS, tandis qu’une augmentation des niveaux de MAG par le « knockdown » d’ABHD6 amĂ©liore la GSIS. L'exposition aiguĂ« des monoacylglycĂ©rols exogĂšnes stimule la sĂ©crĂ©tion d'insuline de maniĂšre dose-dĂ©pendante et restaure la GSIS supprimĂ©e par un inhibiteur de lipases appelĂ© orlistat. En outre, les souris avec une inactivation du gĂšne ABHD6 dans tous les tissus (ABHD6-KO) et celles avec une inactivation du gĂšne ABHD6 spĂ©cifiquement dans la cellule ÎČ prĂ©sentent une GSIS stimulĂ©e, et leurs Ăźlots montrent une augmentation de la production de monoacylglycĂ©rol et de la sĂ©crĂ©tion d'insuline en rĂ©ponse au glucose. L’inhibition d’ABHD6 chez les souris diabĂ©tiques (modĂšle induit par de faibles doses de streptozotocine) restaure la GSIS et amĂ©liore la tolĂ©rance au glucose. De plus, les rĂ©sultats montrent que les MAGs non seulement amĂ©liorent la GSIS, mais potentialisent Ă©galement la sĂ©crĂ©tion d’insuline induite par les acides gras libres ainsi que la sĂ©crĂ©tion d’insuline induite par divers agents et hormones, sans altĂ©ration de l'oxydation et l'utilisation du glucose ainsi que l'oxydation des acides gras. Nous avons dĂ©montrĂ© que le MAG se lie Ă  la protĂ©ine d’amorçage des vĂ©sicules appelĂ©e Munc13-1 et l’active, induisant ainsi l’exocytose de l'insuline. Sur la base de ces observations, nous proposons que le 1-MAG Ă  chaines saturĂ©es agit comme facteur de couplage mĂ©tabolique pour rĂ©guler la sĂ©crĂ©tion d'insuline et que ABHD6 est un modulateur nĂ©gatif de la sĂ©crĂ©tion d'insuline. En plus de son rĂŽle dans les cellules bĂȘta, ABHD6 est Ă©galement fortement exprimĂ© dans les adipocytes et son niveau est augmentĂ© avec l'obĂ©sitĂ©. Les souris dĂ©pourvues globalement d’ABHD6 et nourris avec une diĂšte riche en gras (HFD) montrent une faible diminution de la prise alimentaire, une diminution du gain de poids corporel et de la glycĂ©mie Ă  jeun et une amĂ©lioration de la tolĂ©rance au glucose et de la sensibilitĂ© Ă  l'insuline et ont une activitĂ© locomotrice accrue. En outre, les souris ABHD6-KO affichent une augmentation de la dĂ©pense Ă©nergĂ©tique et de la thermogenĂšse induite par le froid. En conformitĂ© avec ceci, ces souris prĂ©sentent des niveaux Ă©levĂ©s d’UCP1 dans les adipocytes blancs et bruns, indiquant le brunissement des adipocytes blancs. Le phĂ©notype de brunissement est reproduit dans les souris soit en les traitant de maniĂšre chronique avec WWL70 (inhibiteur d’ABHD6) ou des oligonuclĂ©otides anti-sense ciblant l’ABHD6. Les tissus adipeux blanc et brun isolĂ©s de souris ABHD6-KO montrent des niveaux trĂšs Ă©levĂ©s de 1-MAG, mais pas de 2-MAG. L'augmentation des niveaux de MAG soit par administration exogĂšne in vitro de 1-MAG ou par inhibition ou dĂ©lĂ©tion gĂ©nĂ©tique d’ABHD6 provoque le brunissement des adipocytes blancs. Une autre Ă©vidence indique que les 1-MAGs sont capables de transactiver PPARα et PPARÎł et que l'effet de brunissement induit par WWL70 ou le MAG exogĂšne est aboli par les antagonistes de PPARα et PPARÎł. L’administration in vivo de l’antagoniste de PPARα GW6471 Ă  des souris ABHD6-KO inverse partiellement les effets causĂ©s par l’inactivation du gĂšne ABHD6 sur le gain de poids corporel, et abolit l’augmentation de la thermogenĂšse, le brunissement du tissu adipeux blanc et l'oxydation des acides gras dans le tissu adipeux brun. L’ensemble de ces observations indique que ABHD6 rĂ©gule non seulement l’homĂ©ostasie de l'insuline et du glucose, mais aussi l'homĂ©ostasie Ă©nergĂ©tique et la fonction des tissus adipeux. Ainsi, 1-MAG agit non seulement comme un facteur de couplage mĂ©tabolique pour rĂ©guler la sĂ©crĂ©tion d'insuline en activant Munc13-1 dans les cellules bĂȘta, mais rĂ©gule aussi le brunissement des adipocytes blancs et amĂ©liore la fonction de la graisse brune par l'activation de PPARα et PPARÎł. Ces rĂ©sultats indiquent que ABHD6 est une cible prometteuse pour le dĂ©veloppement de thĂ©rapies contre l'obĂ©sitĂ©, le diabĂšte de type 2 et le syndrome mĂ©tabolique.The glycerolipid/ free fatty acid (GL/FFA) cycle is a key metabolic pathway that links glucose and fatty acid metabolism and it consists of lipogenesis and lipolysis. GL/FFA cycling, especially in its lipolysis arm, generates various lipid signaling molecules to regulate insulin secretion in pancreatic ß-cells and non-shivering thermogenesis in adipocytes. Currently, the lipolysis-derived lipid signals involved in this process are uncertain. Triglyceride hydrolysis in mammalian cells is accomplished by the sequential actions of adipose triglyceride lipase to produce diacylglycerol, by hormone sensitive lipase to produce monoacylglycerol (MAG) and by MAG lipase (MAGL) that releases free fatty acid and glycerol. Our work shows that in pancreatic ß-cell, the classical MAGL is poorly expressed and that MAG hydrolysis is mainly conducted by the newly identified α/ÎČ-Hydrolase Domain-6 (ABHD6). Inhibition of ABHD6 by its specific inhibitor WWL70, leads to long-chain saturated 1-MAG accumulation inside the cells, accompanied by enhanced glucose-stimulated insulin secretion (GSIS). Decreasing the MAG levels by overexpression of ABHD6 in the ß-cell line INS832/13 reduces GSIS, while increasing MAG levels by ABHD6 knockdown enhances GSIS. Acute exposure of INS832/13 cells to various MAG species dose-dependently stimulates insulin secretion and restores GSIS suppressed by the pan-lipase inhibitor orlistat. Also, various biochemical and pharmacological experiments show that saturated 1-MAG levels species rather than unsaturated or 2-MAG species best correlate with insulin secretion. Furthermore, whole-body and ÎČ-cell-specific ABHD6-KO mice exhibit enhanced GSIS in vivo, and their isolated islets show elevated MAG production and GSIS. Inhibition of ABHD6 in low dose streptozotocin diabetic mice restores GSIS and improves glucose tolerance. Results further show that ABHD6-accessible MAGs not only enhance GSIS, but also potentiate fatty acid and non-fuel-induced insulin secretion without alteration in glucose oxidation and utilization as well as fatty acid oxidation. We have identified that MAG binds and activates the vesicle priming protein Munc13-1, thereby inducing insulin exocytosis. Based on all these observations, we propose that lipolysis-derived saturated 1-MAG acts as a metabolic coupling factor to regulate insulin secretion and ABHD6 is a negative modulator of insulin secretion. Besides its role in ß-cells, ABHD6 is also highly expressed in adipocytes and its level is increased with obesity. Mice globally lacking ABHD6 on high fat diet (HFD) show modestly reduced food intake, decreased body weight gain, insulinemia and fasting glycemia and improved glucose tolerance and insulin sensitivity and enhanced locomotor activity. In addition, ABHD6-KO mice display increased energy expenditure and cold-induced thermogenesis. In accordance with this, these mice show elevated UCP1 level in white and brown adipocytes, indicating browning of white adipocytes. The browning phenotype is reproduced in the mice either chronically treated with the ABHD6 inhibitor WWL70 or an antisense oligonucleotides targeting ABHD6. White and brown adipose tissues isolated from whole body ABHD6 KO mice show greatly elevated levels of 1-MAG, but not 2-MAG. Increasing MAG levels by either exogenous administration of 1-MAG or ABHD6 inhibition or genetic deletion induces browning of white adipocytes in a cell-autonomous manner. Further evidence indicates that 1-MAGs can transactivate PPARα and PPARÎł and the browning effect induced by WWL70 or exogenous MAG is abolished by PPARα and PPARÎł antagonists. In vivo administration of the PPARα antagonist GW6471 to ABHD6 KO mice partially reversed the ABHD6-KO effects on body weight gain, and abolishes the enhanced thermogenesis, white adipose browning and fatty acid oxidation in brown adipose tissue. All these observations indicate that ABHD6 regulates not only insulin and glucose homeostasis but also energy homeostasis and adipose tissue function. Thus, ABHD6-accessible 1-MAG not only acts as a metabolic coupling factor to regulate fuel and non-fuel induced insulin secretion by activating Munc13-1 in beta cells, but also regulates glucose, insulin and energy homeostasis. The latter effects are mediated at least in part via browning of white adipocytes and enhanced brown fat function through the activation of PPARα and PPARÎł. Collectively these findings suggest that ABHD6 is a promising target for developing therapeutics against obesity, type 2 diabetes and metabolic syndrome

    Transcriptomic resources for prairie grass (Bromus catharticus): expressed transcripts, tissue-specific genes, and identification and validation of EST-SSR markers

    No full text
    Abstract Background Prairie grass (Bromus catharticus) is a typical cool-season forage crop with high biomass production and fast growth rate during winter and spring. However, its genetic research and breeding has remained stagnant due to limited available genomic resources. The aim of this study was to generate large-scale genomic data using high-throughput transcriptome sequencing, and perform a preliminary validation of EST-SSR markers of B. catharticus. Results Eleven tissue samples including seeds, leaves, and stems were collected from a new high-yield strain of prairie grass BCS1103. A total of 257,773 unigenes were obtained, of which 193,082 (74.90%) were annotated. Comparison analysis between tissues identified 1803, 3030, and 1570 genes specifically and highly expressed in seed, leaf, and stem, respectively. A total of 37,288 EST-SSRs were identified from unigene sequences, and more than 80,000 primer pairs were designed. We synthesized 420 primer pairs and selected 52 ones with high polymorphisms to estimate genetic diversity and population structure in 24 B. catharticus accessions worldwide. Despite low diversity indicated by an average genetic distance of 0.364, the accessions from South America and Asia and wild accessions showed higher genetic diversity. Moreover, South American accessions showed a pure ancestry, while Asian accessions demonstrated mixed internal relationships, which indicated a different probability of gene flow. Phylogenetic analysis clustered the studied accessions into four clades, being consistent with phenotypic clustering results. Finally, Mantel analysis suggested the total phenotypic variation was mostly contributed by genetic component. Stem diameter, plant height, leaf width, and biomass yield were significantly correlated with genetic data (r > 0.6, P < 0.001), and might be used in the future selection and breeding. Conclusion A genomic resource was generated that could benefit genetic and taxonomic studies, as well as molecular breeding for B. catharticus and its relatives in the future

    Qa-SNARE syntaxin 18 mediates lipid droplet fusion with SNAP23 and SEC22B

    No full text
    Abstract Lipid droplets (LDs) are dynamic lipid storage organelles that can sense and respond to changes in systemic energy balance. The size and number of LDs are controlled by complex and delicate mechanisms, among which, whether and which SNARE proteins mediate LD fusion, and the mechanisms governing this process remain poorly understood. Here we identified a SNARE complex, syntaxin 18 (STX18)–SNAP23–SEC22B, that is recruited to LDs to mediate LD fusion. STX18 targets LDs with its transmembrane domain spanning the phospholipid monolayer twice. STX18–SNAP23–SEC22B complex drives LD fusion in adiposome lipid mixing and content mixing in vitro assays. CIDEC/FSP27 directly binds STX18, SEC22B, and SNAP23, and promotes the lipid mixing of SNAREs-reconstituted adiposomes by promoting LD clustering. Knockdown of STX18 in mouse liver via AAV resulted in smaller liver and reduced LD size under high-fat diet conditions. All these results demonstrate a critical role of the SNARE complex STX18–SNAP23–SEC22B in LD fusion
    corecore