2,411 research outputs found

    Discovery and Identification of W' and Z' in SU(2) x SU(2) x U(1) Models at the LHC

    Full text link
    We explore the discovery potential of W' and Z' boson searches for various SU(2) x SU(2) x U(1) models at the Large Hadron Collider (LHC), after taking into account the constraints from low energy precision measurements and direct searches at both the Tevatron (1.96 TeV) and the LHC (7 TeV). In such models, the W' and Z' bosons emerge after the electroweak symmetry is spontaneously broken. Two patterns of the symmetry breaking are considered in this work: one is SU(2)_L x SU(2)_2 x U(1)_X to SU(2)_L x U(1)_Y (BP-I), another is SU(2)_1 x SU(2)_2 x U(1)_Y to SU(2)_L x U(1)_Y (BP-II). Examining the single production channel of W' and Z' with their subsequent leptonic decays, we find that the probability of detecting W' and Z' bosons in the considered models at the LHC (with 14 TeV) is highly limited by the low energy precision data constraints. We show that observing Z' alone, without seeing a W', does not rule out new physics models with non-Abelian gauge extension, such as the phobic models in BP-I. Models in BP-II would predict the discovery of degenerate W' and Z' bosons at the LHC.Comment: 29 pages, including 11 figures, 3 tables, added references for introductio

    Frequency pulling and mixing of relaxation oscillations in superconducting nanowires

    Get PDF
    Many superconducting technologies such as rapid single flux quantum computing (RSFQ) and superconducting quantum interference devices (SQUIDs) rely on the modulation of nonlinear dynamics in Josephson junctions for functionality. More recently, however, superconducting devices have been developed based on the switching and thermal heating of nanowires for use in fields such as single photon detection and digital logic. In this paper, we use resistive shunting to control the nonlinear heating of a superconducting nanowire and compare the resulting dynamics to those observed in Josephson junctions. We show that interaction of the hotspot growth with the external shunt produces high frequency relaxation oscillations with similar behavior as observed in Josephson junctions due to their rapid time constants and ability to be modulated by a weak periodic signal. In particular, we use a microwave drive to pull and mix the oscillation frequency, resulting in phase locked features that resemble the AC Josephson effect. New nanowire devices based on these conclusions have promising applications in fields such as parametric amplification and frequency multiplexing

    Backstepping controller design for a class of stochastic nonlinear systems with Markovian switching

    Get PDF
    A more general class of stochastic nonlinear systems with irreducible homogenous Markovian switching are considered in this paper. As preliminaries, the stability criteria and the existence theorem of strong solutions are first presented by using the inequality of mathematic expectation of a Lyapunov function. The state-feedback controller is designed by regarding Markovian switching as constant such that the closed-loop system has a unique solution, and the equilibrium is asymptotically stable in probability in the large. The output-feedback controller is designed based on a quadratic-plus-quartic-form Lyapunov function such that the closed-loop system has a unique solution with the equilibrium being asymptotically stable in probability in the large in the unbiased case and has a unique bounded-in-probability solution in the biased case

    A new stem-varanid lizard (Reptilia, Squamata) from the early Eocene of China

    Get PDF
    Monitor lizards (genus Varanus) are today distributed across Asia, Africa and Australasia and represent one of the most recognizable and successful lizard lineages. They include charismatic living species like the Komodo dragon of Indonesia and the even larger extinct Varanus prisca (Megalania) of Australia. The fossil record suggests that living varanids had their origins in a diverse assemblage of stem (varaniform) species known from the Late Cretaceous of China and Mongolia. However, determining the biogeographic origins of crown-varanids has proved problematic, with Asia, Africa and Australia each being proposed. The problem is complicated by the fragmentary nature of many attributed specimens, and the fact that the most widely accepted, and most complete, fossil of a stem-varanid, that of Saniwa ensidens, is from North America. In this paper, we describe a well-preserved skull and skeleton of a new genus of stem-varanid from the Eocene of China. Phylogenetic analysis places the new genus as the sister taxon of Varanus, suggesting that the transition from Cretaceous varaniform lizards to Varanus occurred in East Asia before the origin and dispersal of Varanus to other regions. The discovery of the new specimen thus fills an important gap in the fossil record of monitor lizards. The similar lengths of the fore- and hindlimbs in this new taxon are unusual among the total group Varanidae and suggest it may have had a different lifestyle, at least from the contemporaneous North American S. ensidens. This article is part of the theme issue 'The impact of Chinese palaeontology on evolutionary research'

    2′-Fluoro-3′,5′-dimethoxy­acetanilide

    Get PDF
    Mol­ecules of the title compound, C10H12FNO3, are nearly planar considering all non-H atoms with a mean deviation of 0.0288 Å. Mol­ecules are linked through inter­molecular N—H⋯O and N—H⋯F hydrogen bonds

    Distinctive response of CNS glial cells in oro-facial pain associated with injury, infection and inflammation

    Get PDF
    Oro-facial pain following injury and infection is frequently observed in dental clinics. While neuropathic pain evoked by injury associated with nerve lesion has an involvement of glia/immune cells, inflammatory hyperalgesia has an exaggerated sensitization mediated by local and circulating immune mediators. To better understand the contribution of central nervous system (CNS) glial cells in these different pathological conditions, in this study we sought to characterize functional phenotypes of glial cells in response to trigeminal nerve injury (loose ligation of the mental branch), infection (subcutaneous injection of lipopolysaccharide-LPS) and to sterile inflammation (subcutaneous injection of complete Freund's adjuvant-CFA) on the lower lip. Each of the three insults triggered a specific pattern of mechanical allodynia. In parallel with changes in sensory response, CNS glial cells reacted distinctively to the challenges. Following ligation of the mental nerve, both microglia and astrocytes in the trigeminal nuclear complex were highly activated, more prominent in the principal sensory nucleus (Pr5) and subnucleus caudalis (Sp5C) area. Microglial response was initiated early (days 3-14), followed by delayed astrocytes activation (days 7-28). Although the temporal profile of microglial and astrocyte reaction corresponded respectively to the initiation and chronic stage of neuropathic pain, these activated glial cells exhibited a low profile of cytokine expression. Local injection of LPS in the lower lip skin also triggered a microglial reaction in the brain, which started in the circumventricular organs (CVOs) at 5 hours post-injection and diffused progressively into the brain parenchyma at 48 hours. This LPS-induced microglial reaction was accompanied by a robust induction of IκB-α mRNA and pro-inflammatory cytokines within the CVOs. However, LPS induced microglial activation did not specifically occur along the pain signaling pathway. In contrast, CFA injection led to minor microglial morphological changes and an induction of IκB-α mRNA in the CVO regions; a significant increase in IL-1β and IL-6 mRNA started only at 48 hours post-injection, when the induced pain-related behavior started to resolve. Our detailed analysis of CNS glial response clearly revealed that both nerve injury and oro-facial infection/inflammation induced CNS glial activation, but in a completely different pattern, which suggests a remarkable plasticity of glial cells in response to dynamic changes in their microenvironment and different potential involvement of this non-neuronal cell population in pathological pain development
    corecore