84 research outputs found

    A High-Quality Mach-Zehnder Interferometer Fiber Sensor by Femtosecond Laser One-Step Processing

    Get PDF
    During new fiber sensor development experiments, an easy-to-fabricate simple sensing structure with a trench and partially ablated fiber core is fabricated by using an 800 nm 35 fs 1 kHz laser. It is demonstrated that the structure forms a Mach-Zehnder interferometer (MZI) with the interference between the laser light passing through the air in the trench cavity and that in the remained fiber core. The fringe visibilities are all more than 25 dB. The transmission spectra vary with the femtosecond (fs) laser ablation scanning cycle. The free spectral range (FSR) decreases as the trench length increases. The MZI structure is of very high fabrication and sensing repeatability. The sensing mechanism is theoretically discussed, which is in agreement with experiments. The test sensitivity for acetone vapor is about 104 nm/RIU, and the temperature sensitivity is 51.5 pm/°C at 200 ~ 875 °C with a step of 25 °C

    A High-Quality Mach-Zehnder Interferometer Fiber Sensor by Femtosecond Laser One-Step Processing

    Get PDF
    During new fiber sensor development experiments, an easy-to-fabricate simple sensing structure with a trench and partially ablated fiber core is fabricated by using an 800 nm 35 fs 1 kHz laser. It is demonstrated that the structure forms a Mach-Zehnder interferometer (MZI) with the interference between the laser light passing through the air in the trench cavity and that in the remained fiber core. The fringe visibilities are all more than 25 dB. The transmission spectra vary with the femtosecond (fs) laser ablation scanning cycle. The free spectral range (FSR) decreases as the trench length increases. The MZI structure is of very high fabrication and sensing repeatability. The sensing mechanism is theoretically discussed, which is in agreement with experiments. The test sensitivity for acetone vapor is about 104 nm/RIU, and the temperature sensitivity is 51.5 pm/°C at 200 ~ 875 °C with a step of 25 °C

    A High-Quality Mach-Zehnder Interferometer Fiber Sensor by Femtosecond Laser One-Step Processing

    Get PDF
    During new fiber sensor development experiments, an easy-to-fabricate simple sensing structure with a trench and partially ablated fiber core is fabricated by using an 800 nm 35 fs 1 kHz laser. It is demonstrated that the structure forms a Mach-Zehnder interferometer (MZI) with the interference between the laser light passing through the air in the trench cavity and that in the remained fiber core. The fringe visibilities are all more than 25 dB. The transmission spectra vary with the femtosecond (fs) laser ablation scanning cycle. The free spectral range (FSR) decreases as the trench length increases. The MZI structure is of very high fabrication and sensing repeatability. The sensing mechanism is theoretically discussed, which is in agreement with experiments. The test sensitivity for acetone vapor is about 104 nm/RIU, and the temperature sensitivity is 51.5 pm/°C at 200 ~ 875 °C with a step of 25 °C

    The linkages with fires, vegetation composition and human activity in response to climate changes in the Chinese Loess Plateau during the Holocene

    Get PDF
    Holocene paleo-records of the Chinese Loess Plateau loess-soil profiles were used to reconstruct wildfire patterns and landscape evolution. We examine black carbon and charcoal influx, combined with the Magnetic susceptibility, delta C-13 values of soil organic matter, pollen counts and other paleo-environmental proxies to discuss interactions with biomass-climate during the Holocene. The history of fires from the charcoal and black carbon (BC, char and soot) influx at the two sites demonstrates a transition from climate-controlled low amplitude variations with peaks during the Early and Middle Holocene (11-3.1kyearsB.P.) to higher amplitude variability in fire occurrence decoupled from climate and tied to human activities during the Late Holocene (3.1-0kyearsB.P.). The difference in fire patterns was attributed to regional effective moisture and human land use over the entre Loess Plateau; meanwhile, fire activities observed during the Holocene are consistent with variations in vegetation composition inferred from delta C-13 values in soil organic matter, pollen counts, and paleoclimate proxies. Regional wildfires rarely occurred on the desert steppe dominated by a weedy C-3 taxon (Artemisia, Compositae, and Chenopodiaceae dominated)during the late glacial period. A limited biomass would not meet fire propagation in the extreme colder and drier environment of the Loess Plateau during those periods, though. As the climate became ameliorated during the early Holocene, there was an increasing biomass and a sufficient contribution do to high fuel accumulation from C-4 taxon (Gramineae). As the middle Holocene progressed toward warmer and wetter conditions, fire events were less frequent on the steppe and forest-steppe (e.g. expansion of trees C-3,C- Quercus, Corylus) of the Loess Plateau. Subsequently, the number of local and regional fire events have largely increased with the colder and drier climate conditions (e.g. expansion of C-3 weedy), which have been decoupling with intensive anthropogenic burning for farming since the past 3kyr. These data suggests that the regional fire patterns vary strongly along environmental gradients in the effective moisture and regional fuel availability as well as the spatial and temporal distributions of Neolithic burning practices over the Loess Plateau in response to the weakening East Asian monsoon during the Holocene

    A novel investment strategy for renewable-dominated power distribution networks

    Get PDF
    Aiming at the problem of insufficient adaptability to the new elements of the new power system in the current distribution network investment method, this paper innovatively proposes a distribution network investment method based on the new power system. By constructing a source-grid-load-storage-side investment calculation model, the investment in the new power system can be accurately calculated. First, the distributed power investment is calculated from the two aspects of new construction and renovation. Secondly, construct the grid investment demand and grid investment capacity measurement model, and obtain the grid side investment model by weighted summation. Then, a model for calculating the scale of investment that can be saved due to demand-side response is constructed, and the cost of demand response is subtracted to obtain a model for calculating the scale of investment that can be saved on the load side. Finally, the energy storage side investment calculation model is constructed from the power supply side, grid side, user-side energy storage investment, and energy storage investment benefit. The research results are applied to the empirical area, and scientific guidance is provided to realize the precise investment in the area

    TcMYC2a, a Basic Helix–Loop–Helix Transcription Factor, Transduces JA-Signals and Regulates Taxol Biosynthesis in Taxus chinensis

    Get PDF
    The multitherapeutic taxol, which can be obtained from Taxus spp., is the most widely used anticancer drug. Taxol biosynthesis is significantly regulated by jasmonate acid (JA), one of the most important endogenous hormones in land plants. Nevertheless, the JA-inducing mechanism remains poorly understood. MYC2 is one of the key regulators of JA signal transfer and the biosynthesis of various secondary metabolites. Here, TcMYC2a was identified to contain a basic helix–loop–helix (bHLH)-leucine zipper domain, a bHLH-MYC_N domain, and a BIF/ACT-like domain. TcMYC2a was also found to bind with TcJAZ3 in yeast, which was a homolog of Arabidopsis JASMONATE ZIM-domain JAZ proteins, indicating that TcMYC2a had a similar function to AtMYC2 of JA signal transduction. TcMYC2a was able to affect the expression of GUS reporter gene by binding with the T/G-box, G-box, and E-box, which were the key cis-elements of TASY and TcERF12/15 promoter. TcMYC2a overexpression also led to significantly increased expression of TASY, tat, dbtnbt, t13h, and t5h genes. Additionally, TcERF15, which played the positive role to regulate tasy gene, was up-regulated by TcMYC2a. All these results revealed that TcMYC2a can regulate taxol biosynthesis either directly or via ERF regulators depending on JA signaling transduction

    The prognostic value of multiparametric cardiac magnetic resonance in patients with systemic light chain amyloidosis

    Get PDF
    BackgroundLate gadolinium enhancement (LGE) is a classic imaging modality derived from cardiac magnetic resonance (CMR), which is commonly used to describe cardiac tissue characterization. T1 mapping with extracellular volume (ECV) and native T1 are novel quantitative parameters. The prognostic value of multiparametric CMR in patients with light chain (AL) amyloidosis remains to be thoroughly investigated.MethodsA total of 89 subjects with AL amyloidosis were enrolled from April 2016 to January 2021, and all of them underwent CMR on a 3.0 T scanner. The clinical outcome and therapeutic effect were observed. Cox regression was used to investigate the effect of multiple CMR parameters on outcomes in this population.ResultsLGE extent, native T1 and ECV correlated well with cardiac biomarkers. During a median follow-up of 40 months, 21 patients died. ECV (hazard ratio [HR]: 2.087 for per 10% increase, 95% confidence interval [CI]: 1.379-3.157, P < 0.001) and native T1 (HR: 2.443 for per 100 ms increase, 95% CI: 1.381-4.321, P=0.002) were independently predictive of mortality. A novel prognostic staging system based on median native T1 (1344 ms) and ECV (40%) was similar to Mayo 2004 Stage, and the 5-year estimated overall survival rates in Stage I, II, and III were 95%, 80%, and 53%, respectively. In patients with ECV > 40%, receiving autologous stem cell transplantation had higher cardiac and renal response rates than conventional chemotherapy.ConclusionBoth native T1 and ECV independently predict mortality in patients with AL amyloidosis. Receiving autologous stem cell transplantation is effective and significantly improves the clinical outcomes in patients with ECV > 40%

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection
    corecore