4,827 research outputs found

    Radio Variability of Sagittarius A* - A 106 Day Cycle

    Get PDF
    We report the presence of a 106-day cycle in the radio variability of Sgr A* based on an analysis of data observed with the Very Large Array (VLA) over the past 20 years. The pulsed signal is most clearly seen at 1.3 cm with a ratio of cycle frequency to frequency width f/Delta_f= 2.2+/-0.3. The periodic signal is also clearly observed at 2 cm. At 3.6 cm the detection of a periodic signal is marginal. No significant periodicity is detected at both 6 and 20 cm. Since the sampling function is irregular we performed a number of tests to insure that the observed periodicity is not the result of noise. Similar results were found for a maximum entropy method and periodogram with CLEAN method. The probability of false detection for several different noise distributions is less than 5% based on Monte Carlo tests. The radio properties of the pulsed component at 1.3 cm are spectral index alpha ~ 1.0+/- 0.1 (for S nu^alpha), amplitude Delta S=0.42 +/- 0.04 Jy and characteristic time scale Delta t_FWHM ~ 25 +/- 5 days. The lack of VLBI detection of a secondary component suggests that the variability occurs within Sgr A* on a scale of ~5 AU, suggesting an instability of the accretion disk.Comment: 14 Pages, 3 figures. ApJ Lett 2000 accepte

    Increased electrical conductivity in fine-grained (Zr,Hf)NiSn based thermoelectric materials with nanoscale precipitates

    Get PDF
    Grain refinement has been conducted to reduce the thermal conductivity and improve the thermoelectric performance of the (Zr,Hf)NiSn based half-Heusler alloys. Nanoscale in situ precipitates were found embedded in the matrix with submicron grains. The lattice thermal conductivity was decreased due to the enhanced boundary scattering of phonons. The increased carrier concentration and electrical conductivity were observed compared to the coarse-grained alloys, which is discussed in relation to the existence of nanoscale precipitates, the effect of antisite defects, and composition change. It is suggested that the nanoscale precipitates play a significant role in the observed electrical conductivity increase

    Magnetic properties of 3d-impurities substituted in GaAs

    Full text link
    We have calculated the magnetic properties of substituted 3d-impurities (Cr-Ni) in a GaAs host by means of first principles electronic structure calculations. We provide a novel model explaining the ferromagnetic long rang order of III-V dilute magnetic semiconductors. The origin of the ferromagnetism is shown to be due to delocalized spin-uncompensated As dangling bond electrons. Besides the quantitative prediction of the magnetic moments, our model provides an understanding of the halfmetallicity, and the raise of the critical temperature with the impurity concentration

    Doping evoluton of antiferromagnetic order and structural distortion in LaFeAsO1x_{1-x}Fx_x

    Full text link
    We use neutron scattering to study the structural distortion and antiferromagnetic (AFM) order in LaFeAsO1x_{1-x}Fx_{x} as the system is doped with fluorine (F) to induce superconductivity. In the undoped state, LaFeAsO exhibits a structural distortion, changing the symmetry from tetragonal (space group P4/nmmP4/nmm) to orthorhombic (space group CmmaCmma) at 155 K, and then followed by an AFM order at 137 K. Doping the system with F gradually decreases the structural distortion temperature, but suppresses the long range AFM order before the emergence of superconductivity. Therefore, while superconductivity in these Fe oxypnictides can survive in either the tetragonal or the orthorhombic crystal structure, it competes directly with static AFM order.Comment: reference update

    Spin and Lattice Structure of Single Crystal SrFe2As2

    Get PDF
    We use neutron scattering to study the spin and lattice structure on single crystals of SrFe2As2, the parent compound of the FeAs based superconductor (Sr,K)Fe2As2. We find that SrFe2As2 exhibits an abrupt structural phase transitions at 220K, where the structure changes from tetragonal with lattice parameters c > a = b to orthorhombic with c > a > b. At almost the same temperature, Fe spins in SrFe2As2 develop a collinear antiferromagnetic structure along the orthorhombic a-axis with spin direction parallel to this a-axis. These results are consistent with earlier work on the RFeAsO (R = rare earth elements) families of materials and on BaFe2As2, and therefore suggest that static antiferromagnetic order is ubiquitous for the parent compound of these FeAs-based high-transition temperature superconductors.Comment: 14 pages with 4 figure

    Long noncoding RNAs in liver cancer: what we know in 2014.

    Get PDF
    INTRODUCTION: Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer with an estimated over half a million new cases diagnosed annually. Due to the difficulty in early diagnosis and lack of effective treatment options, HCC is currently ranked as the second highest neoplastic-related mortality in the world, with an extremely low 5-year survival rate of between 6 and 11%. Long noncoding RNAs (lncRNAs), are genes lacking protein coding ability, have recently emerged as pivotal participants in biological processes, often dysregulated in a range of cancers, including HCC. AREAS COVERED: In this review, we highlight the recent findings of lncRNAs in HCC pathogenesis, with particular attention on epigenetic events. In silico analysis was utilized to emphasize intrinsic linkages within the ncRNA families associated with hepatocarcinogenesis. EXPERT OPINION: While our understanding of lncRNAs in the onset and progression of HCC is still in its infancy, there is no doubt that understanding the activities of ncRNAs will certainly secure strong biomarkers and improve treatment options for HCC patients

    Modelling of Multi-Frequency Microwave Backscatter and Emission of Land Surface by a Community Land Active Passive Microwave Radiative Transfer Modelling Platform (CLAP)

    Get PDF
    Emission and backscattering signals of land surfaces at different frequencies have distinctive responses to soil and vegetation physical states. The use of multi-frequency combined active and passive microwave signals provides complementary information to better understand and interpret the observed signals in relation to surface states and the underlying physical processes. Such a capability also improves our ability to retrieve surface parameters and states such as soil moisture, freeze-thaw dynamics and vegetation biomass and vegetation water content (VWC) for ecosystem monitoring. We present here a prototype Community Land Active Passive Microwave Radiative Transfer Modelling platform (CLAP) for simulating both backscatter (&sigma;0) and emission (TB) signals of land surfaces, in which the CLAP is backboned by an air-to-soil transition model (ATS) (accounting for surface dielectric roughness) integrated with the Advanced Integral Equation Model (AIEM) for modelling soil surface scattering, and the Tor Vergata model for modelling vegetation scattering and the interaction between vegetation and soil parts. The CLAP was used to simulate both ground-based and space-borne multi-frequency microwave measurements collected at the Maqu observatory on the eastern Tibetan plateau. The ground-based systems include a scatterometer system (1&ndash;10 GHz) and an L-band microwave radiometer. The space-borne measurements are obtained from the X-band and C-band Advanced Microwave Scanning Radiometer 2 (AMSR2) radiation observations. The impacts of different vegetation properties (i.e., structure, water and temperature dynamics) and soil conditions (i.e., different moisture and temperature profiles) on the microwave signals were investigated by CLAP simulation for understanding factors that can account for diurnal variations of the observed signals. The results show that the dynamic VWC partially accounts for the diurnal variation of the observed signal at the low frequencies (i.e., S- and L-bands), while the diurnal variation of the observed signals at high frequencies (i.e., X- and C-bands) is more due to vegetation temperature changing, which implies the necessity to first disentangle the impact of vegetation temperature for the use of high frequency microwave signals. The model derived vegetation optical depth &tau; differs in terms of frequencies and different model parameterizations, while its diurnal variation depends on the diurnal variation of VWC regardless of frequency. After normalizing &tau; at multi-frequency by wavenumber, difference is still observed among different frequencies. This indicates that &tau; is indeed frequency-dependent, and &tau; for each frequency is suggested to be applied in the retrieval of soil and vegetation parameters. Moreover, &tau; at different frequencies (e.g., X-band and L-band) cannot be simply combined for constructing accurate long time series microwave-based vegetation product. To this purpose, it is suggested to investigate the role of the leaf water potential in regulating plant water use and its impact on the normalized &tau; at multi-frequency. Overall, the CLAP is expected to improve our capability for understanding and applying current and future multi-frequency space-borne microwave systems (e.g. those from ROSE-L and CIMR) for vegetation monitoring.</p
    corecore