26 research outputs found

    On the effects of the magnetic field and the isotopic substitution upon the infrared absorption of manganites

    Full text link
    Employing a variational approach that takes into account electron-phonon and magnetic interactions in La1xAxMnO3La_{1-x}A_xMnO_3 perovskites with 0<x<0.50<x<0.5, the effects of the magnetic field and the oxygen isotope substitution on the phase diagram, the electron-phonon correlation function and the infrared absorption at x=0.3x=0.3 are studied. The lattice displacements show a strong correlation with the conductivity and the magnetic properties of the system. Then the conductivity spectra are characterized by a marked sensitivity to the external parameters near the phase boundary.Comment: 10 figure

    Comparison of osteogenic capability of 3D-printed bioceramic scaffolds and granules with different porosities for clinical translation

    Get PDF
    Pore parameters, structural stability, and filler morphology of artificial implants are key factors influencing the process of bone tissue repair. However, the extent to which each of these factors contributes to bone formation in the preparation of porous bioceramics is currently unclear, with the two often being coupled. Herein, we prepared magnesium-doped wollastonite (Mg-CSi) scaffolds with 57% and 70% porosity (57-S and 70-S) via a 3D printing technique. Meanwhile, the bioceramic granules (57-G and 70-G) with curved pore topography (IWP) were prepared by physically disrupting the 57-S and 70-S scaffolds, respectively, and compared for in vivo osteogenesis at 4, 10, and 16 weeks. The pore parameters and the mechanical and biodegradable properties of different porous bioceramics were characterized systematically. The four groups of porous scaffolds and granules were then implanted into a rabbit femoral defect model to evaluate the osteogenic behavior in vivo. 2D/3D reconstruction and histological analysis showed that significant bone tissue production was visible in the central zone of porous granule groups at the early stage but bone tissue ingrowth was slower in the porous scaffold groups. The bone tissue regeneration and reconstruction capacity were stronger after 10 weeks, and the porous architecture of the 57-S scaffold was maintained stably at 16 weeks. These experimental results demonstrated that the structure-collapsed porous bioceramic is favorable for early-stage osteoconduction and that the 3D topological scaffolds may provide more structural stability for bone tissue growth for a long-term stage. These findings provide new ideas for the selection of different types of porous bioceramics for clinical bone repair

    Methylprednisolone as Adjunct to Endovascular Thrombectomy for Large-Vessel Occlusion Stroke

    Get PDF
    Importance It is uncertain whether intravenous methylprednisolone improves outcomes for patients with acute ischemic stroke due to large-vessel occlusion (LVO) undergoing endovascular thrombectomy. Objective To assess the efficacy and adverse events of adjunctive intravenous low-dose methylprednisolone to endovascular thrombectomy for acute ischemic stroke secondary to LVO. Design, Setting, and Participants This investigator-initiated, randomized, double-blind, placebo-controlled trial was implemented at 82 hospitals in China, enrolling 1680 patients with stroke and proximal intracranial LVO presenting within 24 hours of time last known to be well. Recruitment took place between February 9, 2022, and June 30, 2023, with a final follow-up on September 30, 2023.InterventionsEligible patients were randomly assigned to intravenous methylprednisolone (n = 839) at 2 mg/kg/d or placebo (n = 841) for 3 days adjunctive to endovascular thrombectomy. Main Outcomes and Measures The primary efficacy outcome was disability level at 90 days as measured by the overall distribution of the modified Rankin Scale scores (range, 0 [no symptoms] to 6 [death]). The primary safety outcomes included mortality at 90 days and the incidence of symptomatic intracranial hemorrhage within 48 hours. Results Among 1680 patients randomized (median age, 69 years; 727 female [43.3%]), 1673 (99.6%) completed the trial. The median 90-day modified Rankin Scale score was 3 (IQR, 1-5) in the methylprednisolone group vs 3 (IQR, 1-6) in the placebo group (adjusted generalized odds ratio for a lower level of disability, 1.10 [95% CI, 0.96-1.25]; P = .17). In the methylprednisolone group, there was a lower mortality rate (23.2% vs 28.5%; adjusted risk ratio, 0.84 [95% CI, 0.71-0.98]; P = .03) and a lower rate of symptomatic intracranial hemorrhage (8.6% vs 11.7%; adjusted risk ratio, 0.74 [95% CI, 0.55-0.99]; P = .04) compared with placebo. Conclusions and Relevance Among patients with acute ischemic stroke due to LVO undergoing endovascular thrombectomy, adjunctive methylprednisolone added to endovascular thrombectomy did not significantly improve the degree of overall disability.Trial RegistrationChiCTR.org.cn Identifier: ChiCTR210005172

    Spatial and seasonal variations of total petroleum hydrocarbon in surface water and sediment in Pearl River Delta

    No full text
    Abstract A field study in the Pearl River Delta of China was conducted in order to describe to the spatial and seasonal variation of occurrence and concentrations of total petroleum hydrocarbon (TPH) in surface water and sediments. Petroleum hydrocarbons and isoprenoid alkanes were quantified by UV spectroscopy and gas chromatography with a mass selective detector. The concentrations of TPH ranged from 4.3 to 68.7 μg L-1 in surface water, and from 66.6 to 1445 μg g-1 in surface sediments. The ratios of pristine to phytane suggested that the main sources of TPH in the sediment were petroleum importation. The highest concentrations of TPH were present in the spring season. When compared with results from previous studies, it can be concluded that the Pearl River Delta was moderately polluted by TPH. No statistically significant correlations were observed between the concentrations of TPH in surface water and sediments

    A single-station empirical TEC model based on long-time recorded GPS data for estimating ionospheric delay

    No full text
    Globally distributed GPS (global positioning system) stations have been continuously running for nearly 20 years, thereby accumulating numerous observations. These long-time recorded GPS data can be used to calculate continuous total electron content (TEC) values at single stations and provide an effective modeling dataset to establish single-station empirical TEC models. In this paper, a new empirical TEC model called SSM-T1 for single stations is proposed on the basis of GPS data calculated by IONOLAB-TEC application from 2004 to 2015. The SSM-T1 model consists of three parts: diurnal, seasonal, and solar dependency variations, with 18 coefficients fitted by the nonlinear least-squares method. The SSM-T1 model is tested at four stations: Paris (opmt), France; Bangalore (iisc), India; Ceduna (cedu), Australia; and O’Higgins (ohi3) over the Antarctic Peninsula. The RMS values of the model residuals at these four stations are 3.22, 4.46, 3.28, and 3.83 TECU. Assessment results show that the SSM-T1 model is in good agreement with the observed GPS-TEC data and exhibits good prediction ability at the Paris, Bangalore, and Ceduna stations. However, at the O’Higgins station, the SSM-T1 model seriously deviates from the observed GPS-TEC data and cannot effectively describe the variation of mid-latitude summer night anomaly

    A single-station empirical TEC model based on long-time recorded GPS data for estimating ionospheric delay

    No full text
    Globally distributed GPS (global positioning system) stations have been continuously running for nearly 20 years, thereby accumulating numerous observations. These long-time recorded GPS data can be used to calculate continuous total electron content (TEC) values at single stations and provide an effective modeling dataset to establish single-station empirical TEC models. In this paper, a new empirical TEC model called SSM-T1 for single stations is proposed on the basis of GPS data calculated by IONOLAB-TEC application from 2004 to 2015. The SSM-T1 model consists of three parts: diurnal, seasonal, and solar dependency variations, with 18 coefficients fitted by the nonlinear least-squares method. The SSM-T1 model is tested at four stations: Paris (opmt), France; Bangalore (iisc), India; Ceduna (cedu), Australia; and O’Higgins (ohi3) over the Antarctic Peninsula. The RMS values of the model residuals at these four stations are 3.22, 4.46, 3.28, and 3.83 TECU. Assessment results show that the SSM-T1 model is in good agreement with the observed GPS-TEC data and exhibits good prediction ability at the Paris, Bangalore, and Ceduna stations. However, at the O’Higgins station, the SSM-T1 model seriously deviates from the observed GPS-TEC data and cannot effectively describe the variation of mid-latitude summer night anomaly

    A New Global Total Electron Content Empirical Model

    No full text
    Research on total electron content (TEC) empirical models is one of the important topics in the field of space weather services. Global TEC empirical models based on Global Ionospheric Maps (GIMs) TEC data released by the International GNSS Service (IGS) have developed rapidly in recent years. However, the accuracy of such global empirical models has a crucial restriction arising from the non-uniform accuracy of IGS TEC data in the global scope. Specifically, IGS TEC data accuracy is higher on land and lower over the ocean due to the lack of stations in the latter. Using uneven precision GIMs TEC data as a whole for model fitting is unreasonable. Aiming at the limitation of global ionospheric TEC modelling, this paper proposes a new global ionospheric TEC empirical model named the TECM-GRID model. The model consists of 5183 sections, corresponding to 5183 grid points (longitude 5&#176;, latitude 2.5&#176;) of GIM. Two kinds of single point empirical TEC models, SSM-T1 and SSM-T2, are used for TECM-GRID. According to the locations of grid points, the SSM-T2 model is selected as the sub-model in the Mid-Latitude Summer Night Anomaly (MSNA) region, and SSM-T1 is selected as the sub-model in other regions. The fitting ability of the TECM-GRID model for modelling data was tested in accordance with root mean square (RMS) and relative RMS values. Then, the TECM-GRID model was validated and compared with the NTCM-GL model and Center for Orbit Determination in Europe (CODE) GIMs at time points other than modelling time. Results show that TECM-GRID can effectively describe the Equatorial Ionization Anomaly (EIA) and the MSNA phenomena of the ionosphere, which puts it in good agreement with CODE GIMs and means that it has better prediction ability than the NTCM-GL model

    MOF-Derived ZnO/Ni 3

    No full text
    corecore