7,152 research outputs found

    Energy-Delay Tradeoffs of Virtual Base Stations With a Computational-Resource-Aware Energy Consumption Model

    Full text link
    The next generation (5G) cellular network faces the challenges of efficiency, flexibility, and sustainability to support data traffic in the mobile Internet era. To tackle these challenges, cloud-based cellular architectures have been proposed where virtual base stations (VBSs) play a key role. VBSs bring further energy savings but also demands a new energy consumption model as well as the optimization of computational resources. This paper studies the energy-delay tradeoffs of VBSs with delay tolerant traffic. We propose a computational-resource-aware energy consumption model to capture the total energy consumption of a VBS and reflect the dynamic allocation of computational resources including the number of CPU cores and the CPU speed. Based on the model, we analyze the energy-delay tradeoffs of a VBS considering BS sleeping and state switching cost to minimize the weighted sum of power consumption and average delay. We derive the explicit form of the optimal data transmission rate and find the condition under which the energy optimal rate exists and is unique. Opportunities to reduce the average delay and achieve energy savings simultaneously are observed. We further propose an efficient algorithm to jointly optimize the data rate and the number of CPU cores. Numerical results validate our theoretical analyses and under a typical simulation setting we find more than 60% energy savings can be achieved by VBSs compared with conventional base stations under the EARTH model, which demonstrates the great potential of VBSs in 5G cellular systems.Comment: 5 pages, 3 figures, accepted by ICCS'1

    Time-dependent generator coordinate method study of mass-asymmetric fission of actinides

    Full text link
    Low-energy positive and negative parity collective states in the equilibrium minimum, and the dynamics of induced fission of actinide nuclei are investigated in a unified theoretical framework based on the generator coordinate method (GCM) with the Gaussian overlap approximation (GOA). The collective potential and inertia tensor, both at zero and finite temperature, are computed using the self-consistent multidimensionally constrained relativistic mean field (MDC-RMF) model, based on the energy density functional DD-PC1. Pairing correlations are treated in the BCS approximation with a separable pairing force of finite range. A collective quadrupole-octupole Hamiltonian characterized by zero-temperature axially-symmetric deformation energy surface and perturbative cranking inertia tensor, is used to model the low-lying excitation spectrum. The fission fragment charge distributions are obtained by propagating the initial collective states in time with the time-dependent GCM+GOA that uses the same quadrupole-octupole Hamiltonian, but with the collective potential and inertia tensor computed at finite temperature. The illustrative charge yields of 228^{228}Th, 234^{234}U, 240^{240}Pu, 244^{244}Cm, and 250^{250}Cf are in very good agreement with experiment, and the predicted mass asymmetry is consistent with the result of a recent microscopic study that has attributed the distribution (peak) of the heavier-fragment nuclei to shell-stabilized octupole deformations.Comment: 10 pages, 8 figures. arXiv admin note: text overlap with arXiv:1809.0614
    corecore