4,002 research outputs found

    2-(4-Hydroxy­phen­yl)acetic acid–4,4′-bipyridine (1/1)

    Get PDF
    In the acid mol­ecule of the title complex, C10H8N2·C8H8O3, the acetyl C—C—C—O torsion angle is −32.1 (3)°, and in the mol­ecule of the base, the dihedral angle between the two pyridine rings is 23.41 (10)°. In the crystal structure, inter­molecular O—H⋯N hydrogen bonds link the acid and the base mol­ecules into a one-dimensional triple-helix framework extended along the b axis

    Realization and design of a pilot assist decision-making system based on speech recognition

    Full text link
    A system based on speech recognition is proposed for pilot assist decision-making. It is based on a HIL aircraft simulation platform and uses the microcontroller SPCE061A as the central processor to achieve better reliability and higher cost-effect performance. Technologies of LPCC (linear predictive cepstral coding) and DTW (Dynamic Time Warping) are applied for isolated-word speech recognition to gain a smaller amount of calculation and a better real-time performance. Besides, we adopt the PWM (Pulse Width Modulation) regulation technology to effectively regulate each control surface by speech, and thus to assist the pilot to make decisions. By trial and error, it is proved that we have a satisfactory accuracy rate of speech recognition and control effect. More importantly, our paper provides a creative idea for intelligent human-computer interaction and applications of speech recognition in the field of aviation control. Our system is also very easy to be extended and applied.Comment: 10 pages, 8 figure

    Gene coexpression network analysis of fruit transcriptomes uncovers a possible mechanistically distinct class of sugar/acid ratio-associated genes in sweet orange

    Full text link
    Background: The ratio of sugars to organic acids, two of the major metabolites in fleshy fruits, has been considered the most important contributor to fruit sweetness. Although accumulation of sugars and acids have been extensively studied, whether plants evolve a mechanism to maintain, sense or respond to the fruit sugar/acid ratio remains a mystery. In a prior study, we used an integrated systems biology tool to identify a group of 39 acid-associated genes from the fruit transcriptomes in four sweet orange varieties (Citrus sinensis L. Osbeck) with varying fruit acidity, Succari (acidless), Bingtang (low acid), and Newhall and Xinhui (normal acid). Results: We reanalyzed the prior sweet orange fruit transcriptome data, leading to the identification of 72 genes highly correlated with the fruit sugar/acid ratio. The majority of these sugar/acid ratio-related genes are predicted to be involved in regulatory functions such as transport, signaling and transcription or encode enzymes involved in metabolism. Surprisingly, only three of these sugar/acid ratio-correlated genes are weakly correlated with sugar level and none of them overlaps with the acid-associated genes. Weighted Gene Coexpression Network Analysis (WGCNA) has revealed that these genes belong to four modules, Blue, Grey, Brown and Turquoise, with the former two modules being unique to the sugar/acid ratio control. Conclusion: Our results indicate that orange fruits contain a possible mechanistically distinct class of genes that may potentially be involved in maintaining fruit sugar/acid ratios and/or responding to the cellular sugar/acid ratio status. Therefore, our analysis of orange transcriptomes provides an intriguing insight into the potentially novel genetic or molecular mechanisms controlling the sugar/acid ratio in fruits

    Editorial: Computational predictions, dynamic tracking, and evolutionary analysis of antibiotic resistance through the mining of microbial genomes and metagenomic data, volume II

    Get PDF
    Antibiotic resistance has emerged as a critical global health challenge, posing a significant threat to human and animal health. The rapid development of antibiotic resistance among pathogens has reduced the efficacy of existing treatments, leading to an urgent need for novel therapeutic strategies. One promising avenue of research involves mining microbial genomes and metagenomic data to uncover novel antimicrobial agents and a better understanding of the resistance mechanism
    corecore