156,736 research outputs found

    Speed of Meridional Flows and Magnetic Flux Transport on the Sun

    Full text link
    We use the magnetic butterfly diagram to determine the speed of the magnetic flux transport on the solar surface towards the poles. The manifestation of the flux transport is clearly visible as elongated structures extended from the sunspot belt to the polar regions. The slopes of these structures are measured and interpreted as meridional magnetic flux transport speed. Comparison with the time-distance helioseismology measurements of the mean speed of the meridional flows at the depth of 3.5--12 Mm shows a generally good agreement, but the speeds of the flux transport and the meridional flow are significantly different in areas occupied by the magnetic field. The local circulation flows around active regions, especially the strong equatorward flows on the equatorial side of active regions affect the mean velocity profile derived by helioseismology, but do not influence the magnetic flux transport. The results show that the mean longitudinally averaged meridional flow measurements by helioseismology may not be used directly in solar dynamo models for describing the magnetic flux transport, and that it is necessary to take into account the longitudinal structure of these flows.Comment: 4 pages, 3 figures, accepted in ApJ Letter

    Effect of oxygen stoichiometry on T(sub c) of Bi-based superconductors

    Get PDF
    The role of oxygen stoichiometry on T(sub c) is relatively well established on La2CuO(4+x) and the YBa2Cu3O(7-x) (123) superconductors, as compared to the Bi-based superconductors. Results are presented of investigations on the effects of oxygen stoichiometry on the transition temperature T(sub c) of Bi2Sr2CaCu2O(8+x) (2212 phase), and Pb-doped Bi2Sr2Ca2Cu3O(10+X) (2223 phase). It is shown that the effects of oxygen stoichiometry on T(sub c) of these two phases are very different. These results may be helpful in understanding the mechanism of superconductivity in the Bi-based superconductors

    Dependence of transition temperature on hole concentration per CuO2 sheet in the Bi-based superconductors

    Get PDF
    The recently observed variations of the transition temperature (T sub c) with oxygen content in the Bi based (2212) and (2223) superconductors are analyzed in terms of p+, the hole concentration per CuO2 sheet. This analysis shows that in this system, T sub c increases with p+ initially, reaching maxima at p+ = 0.2 approx. 0.3, followed by monotonic decrease of T sub c with p+. The forms of these variations are similar to those observed in the La(2-x)Sr(x)CuO4 and YBa2Cu3Oy systems, suggesting that p+ may be an important variable governing superconductivity in the cuprate superconductors

    Killing Spinors for the Bosonic String

    Full text link
    We obtain the effective action for the bosonic string with arbitrary Yang-Mills fields, up to the \alpha' order, in general dimensions. The form of the action is determined by the requirement that the action admit well-defined Killing spinor equations, whose projected integrability conditions give rise to the full set of equations of motion. The success of the construction suggests that the hidden "pseudo-supersymmetry" associated with the Killing spinor equations may be a property of the bosonic string itself.Comment: 9 page
    corecore