618 research outputs found

    Triangular surface mesh fairing via Gaussian curvature flow

    Get PDF
    AbstractSurface mesh fairing by the mean curvature flow and its various modifications have become a popular topic. However, very few researches have been attempted on using the Gaussian curvature flow in surface fairing. The aim of this paper is to investigate such a problem. We find that Gaussian curvature flow can only be used to smooth convex meshes. Hence, it cannot be used to smooth noisy surface meshes because a noisy surface mesh is not convex. To overcome this difficulty, we design a new diffusion equation whose evolution direction depends on the mean curvature normal and the magnitude is a properly defined function of the Gaussian curvature. Experimental results show that the designed fairing scheme can effectively remove the noise and simultaneously preserve the sharp features, such as corners and edges

    Miriam: Exploiting Elastic Kernels for Real-time Multi-DNN Inference on Edge GPU

    Full text link
    Many applications such as autonomous driving and augmented reality, require the concurrent running of multiple deep neural networks (DNN) that poses different levels of real-time performance requirements. However, coordinating multiple DNN tasks with varying levels of criticality on edge GPUs remains an area of limited study. Unlike server-level GPUs, edge GPUs are resource-limited and lack hardware-level resource management mechanisms for avoiding resource contention. Therefore, we propose Miriam, a contention-aware task coordination framework for multi-DNN inference on edge GPU. Miriam consolidates two main components, an elastic-kernel generator, and a runtime dynamic kernel coordinator, to support mixed critical DNN inference. To evaluate Miriam, we build a new DNN inference benchmark based on CUDA with diverse representative DNN workloads. Experiments on two edge GPU platforms show that Miriam can increase system throughput by 92% while only incurring less than 10\% latency overhead for critical tasks, compared to state of art baselines

    A comparison of pitting susceptibility of Q235 and HRB335 carbon steels used for reinforced concrete

    Get PDF
    The phase structure and the pitting susceptibility of two carbon steels, Q235 and HRB335, used for reinforced concrete, are investigated by phase observation, polarization curve measure-ments, electrochemical impedance spectroscopy, and Mott-Schottky analysis. It is found that Q235 is ferrite and HRB335 is pearlite. Q235 is more susceptible to chloride ions leading to pit-ting than HRB335. The polarization curves show that the breakdown potential of the passive film in saturated Ca(OH)2 solution containing 0.4 M NaCl is 0 V for Q235 and 0.34 V for HRB335. The Mott-Schottky analyses show that passive films formed on Q235 and HRB335 in saturated Ca(OH)2 solution containing chloride ions behave like an n-type semiconductor. The passive film formed on Q235 has a higher donor density, which explains why Q235 is more susceptible to pitting than HRB335

    Estimate haplotype frequencies in pedigrees

    Get PDF
    BACKGROUND: Haplotype analysis has gained increasing attention in the context of association studies of disease genes and drug responsivities over the last years. The potential use of haplotypes has led to the initiation of the HapMap project which is to investigate haplotype patterns in the human genome in different populations. Haplotype inference and frequency estimation are essential components of this endeavour. RESULTS: We present a two-stage method to estimate haplotype frequencies in pedigrees, which includes haplotyping stage and estimation stage. In the haplotyping stage, we propose a linear time algorithm to determine all zero-recombinant haplotype configurations for each pedigree. In the estimation stage, we use the expectation-maximization (EM) algorithm to estimate haplotype frequencies based on these haplotype configurations. The experiments demonstrate that our method runs much faster and gives more credible estimates than other popular haplotype analysis software that discards the pedigree information. CONCLUSION: Our method suggests that pedigree information is of great importance in haplotype analysis. It can be used to speedup estimation process, and to improve estimation accuracy as well. The result also demonstrates that the whole haplotype configuration space can be substituted by the space of zero-recombinant haplotype configurations in haplotype frequency estimation, especially when the considered haplotype block is relatively short

    Testing parity symmetry of gravity with gravitational waves

    Full text link
    The examination of parity symmetry in gravitational interactions has drawn increasing attention. Although Einstein's General Relativity is parity-conserved, numerous theories of parity-violating (PV) gravity in different frameworks have recently been proposed for different motivations. In this review, we briefly summarize the recent progress of these theories, and focus on the observable effects of PV terms in the gravitational waves (GWs), which are mainly reflected in the difference between the left-hand and right-hand polarization modes. We are primarily concerned with the implications of these theories for GWs generated by the compact binary coalescences and the primordial GWs generated in the early Universe. The deviation of GW waveforms and/or primordial power spectrum can always be quantified by the energy scale of parity violation of the theory. Applying the current and future GW observation from laser interferometers and cosmic microwave background radiation, the current and potential constraints on the PV energy scales are presented, which indicates that the parity symmetry of gravity can be tested in high energy scale in this new era of gravitational waves.Comment: 22 pages, no figure

    Post-Newtonian parameters of ghost-free parity-violating gravities

    Full text link
    We investigate the slow-motion and weak-field approximation of the general ghost-free parity-violating (PV) theory of gravity in the parametrized post-Newtonian (PPN) framework and derive the perturbative field equations, which are modified by the PV terms of this theory. The complete PPN parameters are obtained by solving the perturbative field equations. We find that all the PPN parameters are exactly the same as those in general relativity, except for an extra parameter κ\kappa, which is caused by the new curl-type term in the gravitomagnetic sector of the metric in this theory. We calculate the precession effects of gyroscopes in this theory and constrain the model parameters by the observations of the Gravity Probe B experiment.Comment: 20 pages, 1 figur

    Constraints on the ghost-free parity-violating gravity from Laser-ranged Satellites

    Full text link
    This paper explores the evolutionary behavior of the Earth-satellite binary system within the framework of the ghost-free parity-violating gravity and the corresponding discussion on the parity-violating effect from the laser-ranged satellites. For this purpose, we start our study with the Parameterized Post-Newtonian (PPN) metric of this gravity theory to study the orbital evolution of the satellites in which the spatial-time sector of the spacetime is modified due to the parity violation. With this modified PPN metric, we calculate the effects of the parity-violating sector of metrics on the time evolution of the orbital elements for an Earth-satellite binary system. We find that among the five orbital elements, the parity violation has no effect on the semi-latus rectum, inclination and ascending node, which are the same as the results of general relativity and consistent with the observations of the current experiment. In particular, parity violation produces non-zero corrections to the eccentricity and pericenter, which will accumulate with the evolution of time, indicating that the parity violation of gravity produces observable effects. The observational constraint on the parity-violating effect is derived by confronting the theoretical prediction with the observation by the LAGEOS II pericenter advance, giving a constraint on the parity-violating parameter space from the satellite experiments.Comment: 13 pages, no figur
    corecore