228 research outputs found

    Study of L0-norm constraint normalized subband adaptive filtering algorithm

    Full text link
    Limited by fixed step-size and sparsity penalty factor, the conventional sparsity-aware normalized subband adaptive filtering (NSAF) type algorithms suffer from trade-off requirements of high filtering accurateness and quicker convergence behavior. To deal with this problem, this paper proposes variable step-size L0-norm constraint NSAF algorithms (VSS-L0-NSAFs) for sparse system identification. We first analyze mean-square-deviation (MSD) statistics behavior of the L0-NSAF algorithm innovatively in according to a novel recursion form and arrive at corresponding expressions for the cases that background noise variance is available and unavailable, where correlation degree of system input is indicated by scaling parameter r. Based on derivations, we develop an effective variable step-size scheme through minimizing the upper bounds of the MSD under some reasonable assumptions and lemma. To realize performance improvement, an effective reset strategy is incorporated into presented algorithms to tackle with non-stationary situations. Finally, numerical simulations corroborate that the proposed algorithms achieve better performance in terms of estimation accurateness and tracking capability in comparison with existing related algorithms in sparse system identification and adaptive echo cancellation circumstances.Comment: 15 pages,15 figure

    Hybrid polymer/ZnO solar cells sensitized by PbS quantum dots

    Get PDF
    Poly[2-methoxy-5-(2-ethylhexyloxy-p-phenylenevinylene)]/ZnO nanorod hybrid solar cells consisting of PbS quantum dots [QDs] prepared by a chemical bath deposition method were fabricated. An optimum coating of the QDs on the ZnO nanorods could strongly improve the performance of the solar cells. A maximum power conversion efficiency of 0.42% was achieved for the PbS QDs' sensitive solar cell coated by 4 cycles, which was increased almost five times compared with the solar cell without using PbS QDs. The improved efficiency is attributed to the cascade structure formed by the PbS QD coating, which results in enhanced open-circuit voltage and exciton dissociation efficiency

    The Gratuitous Repair on Undamaged DNA Misfold

    Get PDF

    Occlusion facial expression recognition based on feature fusion residual attention network

    Get PDF
    Recognizing occluded facial expressions in the wild poses a significant challenge. However, most previous approaches rely solely on either global or local feature-based methods, leading to the loss of relevant expression features. To address these issues, a feature fusion residual attention network (FFRA-Net) is proposed. FFRA-Net consists of a multi-scale module, a local attention module, and a feature fusion module. The multi-scale module divides the intermediate feature map into several sub-feature maps in an equal manner along the channel dimension. Then, a convolution operation is applied to each of these feature maps to obtain diverse global features. The local attention module divides the intermediate feature map into several sub-feature maps along the spatial dimension. Subsequently, a convolution operation is applied to each of these feature maps, resulting in the extraction of local key features through the attention mechanism. The feature fusion module plays a crucial role in integrating global and local expression features while also establishing residual links between inputs and outputs to compensate for the loss of fine-grained features. Last, two occlusion expression datasets (FM_RAF-DB and SG_RAF-DB) were constructed based on the RAF-DB dataset. Extensive experiments demonstrate that the proposed FFRA-Net achieves excellent results on four datasets: FM_RAF-DB, SG_RAF-DB, RAF-DB, and FERPLUS, with accuracies of 77.87%, 79.50%, 88.66%, and 88.97%, respectively. Thus, the approach presented in this paper demonstrates strong applicability in the context of occluded facial expression recognition (FER)

    A visualized model for identifying optimal candidates for aggressive locoregional surgical treatment in patients with bone metastases from breast cancer

    Get PDF
    BackgroundThe impact of surgical resection of primary (PTR) on the survival of breast cancer (BC) patients with bone metastasis (BM) has been preliminarily investigated, but it remains unclear which patients are suitable for this procedure. Finally, this study aims to develop a predictive model to screen BC patients with BM who would benefit from local surgery.MethodsBC patients with BM were identified using the Surveillance, Epidemiology, and End Results (SEER) database (2010 and 2015), and 39 patients were obtained for external validation from an Asian medical center. According to the status of local surgery, patients were divided into Surgery and Non-surgery groups. Propensity score matching (PSM) analysis was performed to reduce selection bias. Kaplan-Meier (K-M) survival and Cox regression analyses were conducted before and after PSM to study the survival difference between the two groups. The survival outcome and treatment modality were also investigated in patients with different metastatic patterns. The logistic regression analyses were utilized to determine significant surgery-benefit-related predictors, develop a screening nomogram and its online version, and quantify the beneficial probability of local surgery for BC patients with BM. Receiver operating characteristic (ROC) curves, the area under the curves (AUC), and calibration curves were plotted to evaluate the predictive performance and calibration of this model, whereas decision curve analysis (DCA) was used to assess its clinical usefulness.ResultsThis study included 5,625 eligible patients, of whom 2,133 (37.92%) received surgical resection of primary lesions. K-M survival analysis and Cox regression analysis demonstrated that local surgery was independently associated with better survival. Surgery provided significant survival benefits in most subgroups and metastatic patterns. After PSM, patients who received surgery had a longer survival time (OS: 46 months vs. 32 months, p < 0.001; CSS: 50 months vs. 34 months, p < 0.001). Logistic regression analysis determined six significant surgery-benefit-related variables: T stage, radiotherapy, race, liver metastasis, brain metastasis, and breast subtype. These factors were combined to establish the nomogram and a web probability calculator (https://sunshine1.shinyapps.io/DynNomapp/), with an AUC of 0.673 in the training cohort and an AUC of 0.640 in the validation cohort. The calibration curves exhibited excellent agreement. DCA indicated that the nomogram was clinically useful. Based on this model, surgery patients were assigned into two subsets: estimated sur-non-benefit and estimated sur-benefit. Patients in the estimated sur-benefit subset were associated with longer survival (median OS: 64 months vs. 33 months, P < 0.001). Besides, there was no difference in survival between the estimated sur-non-benefit subset and the non-surgery group.ConclusionOur study further confirmed the significance of local surgery in BC patients with BM and proposed a novel tool to identify optimal surgical candidates

    Individualized assessment predictive models for risk and overall survival in elderly patients of primary kidney cancer with bone metastases: A large population-based study

    Get PDF
    BackgroundElderly people are at high risk of metastatic kidney cancer (KC), and, the bone is one of the most common metastatic sites for metastatic KC. However, studies on diagnostic and prognostic prediction models for bone metastases (BM) in elderly KC patients are still vacant. Therefore, it is necessary to establish new diagnostic and prognostic nomograms.MethodsWe downloaded the data of all KC patients aged more than 65 years during 2010–2015 from the Surveillance, Epidemiology, and End Results (SEER) database. Univariate and multivariate logistic regression analyses were used to study independent risk factors of BM in elderly KC patients. Univariate and multivariate Cox regression analysis for the study of independent prognostic factors in elderly KCBM patients. Survival differences were studied using Kaplan–Meier (K–M) survival analysis. The predictive efficacy and clinical utility of nomograms were assessed by receiver operating characteristic (ROC) curve, the area under curve (AUC), calibration curve, and decision curve analysis (DCA).ResultsA final total of 17,404 elderly KC patients (training set: n = 12,184, validation set: n = 5,220) were included to study the risk of BM. 394 elderly KCBM patients (training set: n = 278, validation set: n = 116) were included to study the overall survival (OS). Age, histological type, tumor size, grade, T/N stage and brain/liver/lung metastasis were identified as independent risk factors for developing BM in elderly KC patients. Surgery, lung/liver metastasis and T stage were identified as independent prognostic factors in elderly KCBM patients. The diagnostic nomogram had AUCs of 0.859 and 0.850 in the training and validation sets, respectively. The AUCs of the prognostic nomogram in predicting OS at 12, 24 and 36 months were: training set (0.742, 0.775, 0.787), and validation set (0.721, 0.827, 0.799), respectively. The calibration curve and DCA also showed excellent clinical utility of the two nomograms.ConclusionTwo new nomograms were constructed and validated to predict the risk of developing BM in elderly KC patients and 12-, 24-, and 36-months OS in elderly KCBM patients. These models can help surgeons provide more comprehensive and personalized clinical management programs for this population

    Span-Level Dual-Encoder Model for Aspect Sentiment Triplet Extraction

    Get PDF
    Aspect sentiment triplet extraction (ASTE)  is one of the subtasks of aspect-based sentiment analysis, which aims to identify all aspect terms, their corresponding opinion terms and sentiment polarities in sentences. Currently, pipeline or end-to-end models are adopted to accomplish the ASTE task. The former cannot solve the overlapping problem of aspect terms in triplets and ignores the dependency between opinion terms and sentiment polarities. The latter divides the ASTE task into two subtasks of aspect-opinion-extraction and sentiment-polarity-classification, which applies multi-task learning through a shared encoder. However, this setting does not distinguish the differences between the features of the two subtasks, leading to the feature confusion problem. SD-ASTE (span-level dual-encoder model for ASTE), a pipeline model with two modules, is proposed to address the above problems. The first module extracts aspect terms and opinion terms based on spans. The span feature representation incor-porates span head, tail and length information to focus on the boundary information of aspect terms and opinion terms. The second module judges the sentiment polarities expressed by aspect-opinion span pairs. The span-pair feature representation is based on levitated markers to focus on the dependency among triplet elements. The model utilizes two independent encoders to extract different features for each module. Comparative experimental results on multiple datasets show that the model is superior to the state-of-the-art pipeline and end-to-end models. Validity experiments show the effectiveness of the span feature representation, span-pair feature representation and the two independent encoders

    Clinical characteristic–assisted surgical benefit stratification for resection of primary tumor in patients with advanced primary malignant bone neoplasms: a population-based propensity score–matched analysis

    Get PDF
    BackgroundPrimary tumor resection (PTR) is the standard treatment for patients with primary malignant bone neoplasms (PMBNs). However, it remains unclear whether patients with advanced PMBNs still benefit from PTR. This study aimed to develop a prediction model to estimate the beneficial probability of PTR for this population.MethodsThis study extracted data from patients diagnosed with advanced PMBNs, as recorded in the Surveillance, Epidemiology, and End Results (SEER) database, with the period from 2004 to 2015. The patient cohort was then bifurcated into two groups: those who underwent surgical procedures and the non-surgery group. Propensity score matching (PSM) was utilized to mitigate any confounding factors in the study. The survival rates of patients from both the surgical and non-surgery groups were evaluated using Kaplan–Meier (K-M) curves analysis. Moreover, the study used this method to assess the capacity of the nomogram to distinguish patients likely to derive benefits from surgical intervention. The study was grounded in the hypothesis that patients who underwent PTR and survived beyond the median overall survival (OS) time would potentially benefit from the surgery. Subsequently, logistic regression analysis was performed to ascertain significant predictors, facilitating the development of a nomogram. This nomogram was subjected to both internal and external validation using receiver operating characteristic curves, area under the curve analysis, calibration plots, and decision curve analysis.ResultsThe SEER database provided a total of 839 eligible patients for the study, among which 536 (63.9%) underwent PTR. Following a 2:1 PSM analysis, patients were classified into two groups: 364 patients in the surgery group and 182 patients in the non-surgery group. Both K-M curves and multivariate Cox regression analysis revealed that patients who received PTR had a longer survival duration, observed both before and after PSM. Crucial factors such as age, M stage, and tumor size were identified to be significantly correlated with surgical benefits in patients with advanced PMBNs. Subsequently, a nomogram was developed that uses these independent predictors. The validation of this predictive model confirmed its high accuracy and excellent discrimination ability of the nomogram to distinguish patients who would most likely benefit from surgical intervention.ConclusionIn this study, we devised a user-friendly nomogram to forecast the likehood of surgical benefits for patients diagnosed with advanced PMBNs. This tool facilitates the identification of the most suitable candidates for PTR, thus promoting more discerning and effective use of surgical intervention in this patient population
    corecore