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Occlusion facial expression
recognition based on feature
fusion residual attention network

Yuekun Chen, Shuaishi Liu*, Dongxu Zhao and Wenkai Ji

School of Electrical and Electronic Engineering, Changchun University of Technology, Changchun,

China

Recognizing occluded facial expressions in the wild poses a significant challenge.

However, most previous approaches rely solely on either global or local feature-

based methods, leading to the loss of relevant expression features. To address

these issues, a feature fusion residual attention network (FFRA-Net) is proposed.

FFRA-Net consists of a multi-scalemodule, a local attentionmodule, and a feature

fusion module. The multi-scale module divides the intermediate feature map

into several sub-feature maps in an equal manner along the channel dimension.

Then, a convolution operation is applied to each of these feature maps to obtain

diverse global features. The local attentionmodule divides the intermediate feature

map into several sub-feature maps along the spatial dimension. Subsequently, a

convolution operation is applied to each of these feature maps, resulting in the

extraction of local key features through the attention mechanism. The feature

fusion module plays a crucial role in integrating global and local expression

features while also establishing residual links between inputs and outputs to

compensate for the loss of fine-grained features. Last, two occlusion expression

datasets (FM_RAF-DB and SG_RAF-DB) were constructed based on the RAF-

DB dataset. Extensive experiments demonstrate that the proposed FFRA-Net

achieves excellent results on four datasets: FM_RAF-DB, SG_RAF-DB, RAF-DB, and

FERPLUS, with accuracies of 77.87%, 79.50%, 88.66%, and 88.97%, respectively.

Thus, the approach presented in this paper demonstrates strong applicability in

the context of occluded facial expression recognition (FER).

KEYWORDS

occluded facial expression recognition, feature fusion network, multi-scale module, local

attention module, attention mechanism

1. Introduction

Facial expression recognition (FER) has emerged as a critical research direction in
the field of artificial intelligence due to the significant role facial expressions play in
daily interpersonal communication. FER holds potential applications across diverse fields,
including intelligent tutoring systems, service robots, and driver fatigue detection (Poulose
et al., 2021a,b). As a result, it has garnered increasing attention in the field of computer vision
in recent years.

FER methods can be categorized into two types depending on the scenario: studies
conducted in a controlled laboratory environment and studies conducted outside the
laboratory in an uncontrolled environment. In controlled environments, the small sample
size of the collected data affects the model’s feature learning. To overcome this, some
researchers propose a new encoder-decoder structure that generates various facial expression
images, effectively expanding the sample size (Zhang et al., 2018). Furthermore, Xue
et al. (2021) proposed the TransFER model, investigating the relationship between global
Transformer-extracted features and local CNN-extracted features. This enhances feature
learning and improves model performance. However, these approaches primarily rely on
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studies conducted on laboratory datasets, such as CK+ (Lucey
et al., 2010), MMI (Valstar and Pantic, 2010), and OULU-CASIA
(Zhao et al., 2011). Despite achieving high accuracy on these
datasets, FER methods exhibit poor performance in uncontrolled
environments. To address this, some researchers have tackled
class imbalance and label noise issues in datasets by utilizing
techniques like data augmentation and auxiliary datasets (Wang
et al., 2018). Network interpretability studies demonstrate that
models can prioritize relevant facial expression features, resulting
inmore accurate emotion detection (Kim et al., 2021). Additionally,
the noisy labeling problem in real-world datasets can be mitigated
by introducing a probabilistic transformation layer (Zeng et al.,
2018). The above methods are investigated on expression datasets
in uncontrolled environments. However, FER still faces challenges
when the face is partially occluded by objects like sunglasses,
scarves, masks, or other random items that frequently occur in real
images or videos.

Addressing the facial occlusion problem is crucial for
improving the performance of FER models in real-world
environments. As shown in Figure 1, the occlusion problem leads
to a large spatial change in the appearance of the face. To
tackle this issue, certain researchers have suggested utilizing deep
CNN networks for solving the occlusion problem. Specifically,
two CNN networks are trained from a global perspective using
occluded and non-occluded face images. The non-occluded face
images are utilized as privileged information for fine-tuning the
occluded expression recognition network. This approach (Pan
et al., 2019) significantly reduces occlusion interference and
enhances network performance. However, the drawback of this
FER algorithm is its focus solely on global features, neglecting
the crucial local detail features that play a vital role in expression
discrimination. Therefore, regarding the occlusion FER problem,
certain researchers suggested a method based on local keypoint
localization (Wang K. et al., 2019), effectively capturing crucial
local facial features. However, choosing the appropriate local
regions remains a key issue. To address this, researchers employed
three local region generation schemes: fixed position selection,
random selection, and labeled keypoint selection. This approach
significantly enhances the performance of the occlusion FER
model. An alternative method for keypoint selection involves
choosing 24 facial keypoints to define 24 key local regions.
Subsequently, an attention network is employed to extract features
from each region, allowing better focus on important local
features. This approach (Li et al., 2018) offers a viable solution
to the occlusion FER problem. Nonetheless, the localization-based
approach has a drawback of neglecting global information, which
limits its overall ability in expression discrimination. Consequently,
the effective combination of global and local features is paramount
in addressing the occlusion FER problem.

To solve the above issues, a feature fusion residual attention
network aiming to enhance feature robustness is proposed.
In convolutional neural networks (CNNs), deep convolutions
exhibit a broader receptive domain and encompass richer
semantic features, whereas shallow convolutions have a narrower
receptive domain and capture rich profile features. However, deep
convolutions are susceptible to occlusion (Proverbio and Cerri,
2022). To address this, this paper employ multi-scale modules to

extract features from diverse receptive domains, thereby enhancing
the diversity and robustness of global features. Additionally, this
paper design local attention modules to extract local features,
mitigating occlusion interference. To learn both global multi-scale
and local features, this paper employed a two-branch network.
The first branch utilized the multi-scale module, while the second
branch divided the extracted feature maps into multiple non-
overlapping local feature maps, which were then processed using
the attention mechanism. Finally, the processed features were
fused. The main contributions of this paper can be summarized as
follows:

1. Feature fusion residual attention network (FFRA-Net), a simple
and effective FER network, is proposed to address the challenge
of facial occlusion by enhancing the diversity of expression
features through feature fusion.

2. The multi-scale module extracts features at different scales
from the feature map, thereby reducing the sensitivity of deep
convolutions to occlusion. Additionally, the local attention
module focuses on local salient features and mitigates occlusion
interference.

The remainder of this paper is structured as follows. Section
2 provides a review of relevant literature. Subsequently, the
proposed approach is presented in Section 3. Section 4 presents
the experimental results for both obscured and non-obscured
expression datasets. Additionally, visualizations are provided to
further validate the proposed method. Section 5 summarizes the
findings.

2. Related work

2.1. Deep convolutional FER

In recent years, researchers have made significant progress
in FER by proposing numerous methods based on deep CNNs.
However, deep learning-based FER often disregards domain-
specific knowledge related to facial expressions. To tackle this
issue, Chen et al. (2019) introduced a framework for FER that
leverages prior knowledge by utilizing the distinctions between
neutral expressions and other expressions to train the network.
Moreover, head pose variation poses a common challenge in
expression recognition. To tackle this issue, Marrero-Fernández
et al. (2019) propose an end-to-end architecture with an attention
mechanism that rectifies facial images to improve expression
classification. Due to the subtle variations in expressions, the issue
of inter-class similarity in expression datasets becomes crucial.
To address this, Wen et al. (2021) proposed attention distraction
networks. The aforementioned methods primarily concentrate
on datasets obtained in controlled environments, where facial
images are predominantly frontal. Consequently, the model’s
performance suffers when it comes to recognizing facial expressions
in uncontrolled environments.

To differentiate between uncertain and blurred expression
images in uncontrolled environments, Pu et al. (2020) proposed
an expression recognition framework based on facial action
units. The framework incorporates an attention mechanism that
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FIGURE 1

Some examples of images from the RAF-DB dataset, where the first row comprises non-occluded expression images and the second row comprises

occluded expression images.

dynamically focuses on significant facial actions. To quantify these
uncertainties, Zhang et al. (2021) proposed a relative uncertainty
method that assigns weights based on uncertainties, fuses facial
features, and introduces a new uncertainty loss. She et al. (2021)
introduced a multi-branch learning network to address the label
ambiguity problem in FER. The method enhances the ability
to explore and capture the underlying distribution in the label
space. Furthermore, the expression dataset faces challenges posed
by pose variation and identity bias. To tackle these challenges,
Wang C. et al. (2019) proposed an adversarial feature learning
method. The gesture discriminator and identity discriminator
classify gestures and identities based on the extracted feature
representations, respectively. Similarly, Chen and Joo (2021)
presented a FER framework based on facial action units. The
framework integrates a triple loss into the objective function,
leading to improved expression classification accuracy. Despite
the impressive performance of the aforementioned methods on
uncontrolled environment data, the task of masking FER remains
challenging.

2.2. Occluded FER

Considering the limited availability of large-scale occluded
expression datasets, Xia and Wang (2020) proposed a stepwise
learning strategy for occluded FERmodels. The distribution density
in the feature space is first used to measure the complexity
of the non-occluded data, thus guiding the distribution of the
occluded expression features to converge to the distribution of
the non-occluded expression features. In a similar vein, Pan
et al. (2019) presented a novel method for occluded FER that
leverages non-obscured face image information. This approach
aims to align the distribution of learned occluded face image
features with the distribution of non-occluded face image features.
Nonetheless, the aforementioned methods rely on global features.
In occlusion expression recognition, global features are susceptible
to the influence of occlusion, leading to reduced accuracy in

expression recognition. To overcome this challenge, Wang K. et al.
(2019) introduced a network based on local region attention.
Additionally, they proposed a region bias loss to assign weights
to local region attention. Xue et al. (2022) proposed a dedicated
attention mechanism for FER networks. The proposed model
selectively focuses on the most relevant expression features while
disregarding irrelevant features, thereby avoiding undue emphasis
on occlusion or other noisy regions. The aforementioned approach
based on local features effectively addresses the occlusion problem.
However, it overlooks global information and possesses limited
discriminative ability for expression as a whole.

Hence, it is crucial to consider both global and local features
for effective occluded expression recognition. Ding et al. (2020)
introduced an adaptive depth network for recognizing occluded
facial expressions. Initially, global features are extracted using
the ResNet-50 backbone network. Subsequently, the network is
partitioned into two branches. Each branch is further divided
into multiple sub-regions, with each sub-region independently
predicting expressions. Finally, strategy fusion is conducted to
obtain the final classification results. Zhao et al. (2021) presented
an expression recognition network capable of learning global and
local features. This network effectively mitigates the deep network’s
sensitivity to occlusion and autonomously attends to local key
information. Finally, the same policy fusion is employed to derive
the results. Nevertheless, the policy fusion approach is prone to
overfitting as the network deepens and shows poor performance
when trained on certain realistic occlusion data.

3. Proposed method

FFRA-Net is a feature fusion network designed to address the
recognition of obscured facial expressions. The method comprises
a multi-scale module, a local attention module, a feature fusion
module, and a residual link. The backbone network chosen for
this purpose is ResNet-18 (He et al., 2015). Figure 2 illustrates the
structure of FFRA-Net. Initially, the feature preextractor captures
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the intermediate facial expression features, which are obtained from
the first three convolutional stages of ResNet-18. Then, a two-
branch network is used to process the acquired intermediate feature
maps into the multiscale module and the local attention module,
respectively, allowing the model to obtain both global and local
expression features. Subsequently, the model enters the feature
fusion phase, where a weighted fusion approach is applied to assign
specific weights to the feature mappings from the two branches.
These weighted features are then directly summed. Meanwhile,
it is then added with the original intermediate feature map to
form a residual connection, and finally a global and local attention
feature map is obtained. Finally, this feature map proceeds to the
last convolutional stage of ResNet-18, followed by fully connected
layers for deriving the classification results.

3.1. Multi-scale module

Multi-scale modules are widely used in computer vision
for processing visual information across different scales (Gao
et al., 2019; Ma and Zhang, 2023). It is widely used in
many tasks, including target detection and image segmentation.
Typically, the multi-scale module divides the feature map into
multiple subregions of different scales in the spatial dimension,
processing each subregion individually. However, this approach is
primarily applicable to visual tasks like target detection and image
segmentation. Occluded expression recognition is influenced by
occlusions, leading to the absence of certain semantic information.
To compensate for this deficiency, there is a need for more
comprehensive and diverse global features. To tackle this issue,
a novel multi-scale image classification module is proposed
(Figure 3A). The feature map is divided into multiple sub-feature
maps along the channel dimension, enabling the extraction of a
broader range of global expression information.

The objective of this method is to learn multi-scale features
within the feature map while ensuring that the feature subsets
encompass a wider range of scale information. Specifically, the
feature mapping X is obtained through feature pre-extraction.
Next, the module partition X into n feature map subsets along the
channel axis, denoted as Xi, with i ∈ {1, 2, . . . , n} representing
the index. Each feature subset Xi has the same spatial size as the
feature map X but contains only 1/n channels. Subsequently, a
3×3 convolution is applied to each Xi, yielding the output denoted
as Pms

i , while Yms
i represents the output after fusion of each sub-

feature. Therefore, the expression for each output Yms
i can be

defined as follows:

Yms
i =

{

Pms
i (Xi) i = 1

Pms
i

(

Xi + Yms
i−1

)

1 < i 6 n
(1)

Equation 1 demonstrates that each output Yms
i encompasses a

distinct number and scale of subset features. In order to obtain a
more diverse collection of global features, the module concatenate
all the Yms

i outputs along the channel dimension. However,
increasing the value of n results in features containing more
scale information, which in turn increases model complexity and
computational overhead. Taking these factors into consideration, n
is set to 4 in this module to optimize the performance of the model.

The multi-scale convolution captures comprehensive and
detailed global information in the feature map, thereby reducing
the sensitivity of deep convolution to occlusion. Compared to the
traditional ResNet-18 network, this network selectively attends to
the facial regions related to expression while disregarding occluded
regions, thus effectively addressing the issue of facial occlusion.

3.2. Local attention module

The local attention module, commonly used in computer
vision, utilizes the attention mechanism to capture essential
information from images. The attention mechanism, similar to
human vision, assigns weights to channels or spatial domains
through automatic learning. This enables the neural network to
focus on important regions and disregard others. In occlusion-
based FER, a portion of the facial image is obscured by an occluder,
leading to a loss of discriminative ability in the occluded region’s
features. Based on this feature, a novel local attention module
(Figure 3B) is proposed. This module significantly enhances the
model’s perceptual capability.

Local features play a crucial role in occlusion FER. However,
previous methods often employ face tagging or random cropping
to divide faces into multiple local regions in order to extract
effective local features. but these methods may result in redundancy
of features and increase in computational overhead. To solve
this issue, the intermediate feature maps are divided into non-
overlapping local feature maps, aiming to enable each local feature
map to autonomously focus on local key features using attention
mechanism. Therefore, after 3× 3 convolution of the feature maps
obtained by feature pre-extraction, the module divide the extracted
feature map S into several local feature maps Si along the spatial
axis, where i ∈ {1, 2, . . . ,m}. Each Si undergoes a 3×3 convolution,
resulting in a feature map denoted as F ∈ R

H×W×C. Shuffle
Attention (SA) mechanism was subsequently used as the attention
network (Zhang and Yang, 2021). The SA module divides the input
feature map into G sub-feature maps evenly across the channel
dimension, where G is set to 8. Subsequently, each sub-feature
map is evenly divided into two feature maps along the channel
dimension. Then, the SA module calculates the channel and spatial
attention weights for each of the two feature maps successively,
focusing on the channel and spatial dimensions, respectively.
Subsequently, the attention weights are multiplied with the original
feature maps to generate attention maps in both dimensions. As
shown in Equations 2 and 3, these two attention maps are then
combined, and the same process is repeated for the remaining sub-
feature maps. The interaction between each sub-feature graph is
achieved through the channel shuffle operation. Channel shuffle
involves randomly rearranging the original channel order of the
feature map before their combination. Finally, an attention graph
with the same shape as the input feature graph is generated. In
our network, each Fi ∈ R

H×W×C/G (where i ∈ {1, 2, . . . ,G})
is further divided into Fij ∈ R

H×W×C/2G (where j ∈ {1, 2}),
and the attention network takes Fij as input. It calculates a one-
dimensional channel attention weight map Mc ∈ R

1×1×C and a
two-dimensional spatial attention weight map Ms ∈ R

H×W×1 for
element-level multiplication denoted by ⊗, and outputs the result
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FIGURE 2

The model structure employed in this paper. The method includes the backbone network ResNet-18, along with a multi-scale module, a local

attention module, and a weighted fusion module. Here, Input image from the RAF-DB dataset, λ = 0.6 represents the weight assigned to local

features, FL indicates the tiling operation, and FC refers to the fully connected network.

as Fr after stitching the sub-attention maps (Fr). Therefore, the
attention network can be expressed as follows:

Fri =
[(

Ms

(

Fij
)

⊗ Fij
)

,
(

Mc

(

Fij
)

⊗ Fij
)]

(2)

Fr = [Fr1, · · · , FrG] (3)

Let the output of the 3 × 3 convolutional and attentional
network be denoted as Plai , and the output after feature fusion as
Y la
i . Thus, each output can be expressed as follows:

Y la
i =







Plai (Si) i = 1

Plai

(

Si + Y la
i−1

)

1 < i 6 n
(4)

Based on Equation 4, each output comprises varying numbers
and sizes of local features. To obtain a wider range of diverse local
features, the module concatenate all the outputs along the spatial
dimensions. In this study, m is set to 4, which aligns better with
the characteristics of masked expression images and guarantees
improved model performance.

3.3. Feature fusion module

In computer vision, a feature fusion module is employed to
integrate information from diverse feature types, enhancing the
performance of vision tasks. To maintain a balance between the
significance of multi-scale and local attention features, weights are
incorporated into the feature fusion module. Figure 3C illustrates
the integration of global and local information within this
module, resulting in improved model performance. Furthermore,
to enhance the network’s expressive capacity, the module establish
residual connections between the input and output features. This

enables the network to more effectively capture image details
and contextual information. Here, the original input features are
denoted as X, the outputs of the multi-scale and local attention
modules as Yms

i and Y la
i , respectively, and the output of the final

feature fusion module as X. Therefore, it can be expressed as:

Y = λY la
i + (1− λ)Yms

i + X (5)

In Equation 5, λ represents a hyperparameter that controls the
relative significance of the multi-scale and local attention modules.
It is demonstrating experimentally that the model achieves the best
performance when λ is set to 0.6.

4. Experiment

This section describes the data set used and the data processing
procedures. And the details of the experimental setup are presented.
Then, the experimental results are presented, including the results
of the ablation experiments, the determination of the feature fusion
weights, the visualization of the CAM, and the results of the partial
confusion matrix. Last, the method of this paper is compared with
other methods, and the experimental results are comprehensively
analyzed.

4.1. Datasets

RAF-DB (Li and Deng, 2019): RAF-DB, a real-world expression
dataset, comprises 29,672 facial expression images. These images
were independently annotated by approximately 40 annotators.
The experiments in this paper utilized a single tag provided
by RAF-DB. The dataset consists of 15,339 expression images,
encompassing six basic expressions (happy, surprised, sad, angry,
disgusted, and fearful), as well as neutral expressions. Out of
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FIGURE 3

FFRA-Net uses three types of modules. Multi-scale module, local attention module, and feature fusion module. (A) Multi-scale. (B) Local attention.

(C) Feature fusion.

these, 12,271 images were allocated for training, while 3,068 were
allocated for testing.

FERPLUS (Barsoum et al., 2016): FERPLUS is an
extension of FER2013, a large-scale dataset collected using
the Google Image Search API. The dataset comprises 28,709
training images, 3,589 validation images, and 3,589 test
images. It was re-labeled by 10 annotation workers to
include six basic expressions (happy, surprised, sad, angry,
disgusted, and fearful), as well as neutral and contemptuous
expressions.

FM_RAF-DB and SG_RAF-DB: To evaluate the performance
of our proposed FER model under realistic occlusion conditions,
two occlusion representation datasets were created based on
RAF-DB: FM_RAF-DB and SG_RAF-DB. Using face detection
(Deng et al., 2020), these datasets simulate both cases of faces
wearing masks and sunglasses. The masked face method used,
specifically, marks the key points of the face and selects the
key points around the eyes and mouth. The method then
uses a bionic matrix and a bionic transformation calculation
to place the mask image and the sunglasses image in their
respective positions (refer to Figure 4). These two datasets better
simulate the facial occlusion in real scenes, allowing a more
accurate evaluation of the performance of our proposed FER
model.

4.2. Implementation details

For all datasets, official face-aligned samples are used. The
input images of RAF-DB and FERPLUS datasets were cropped to
a size of pixels, respectively. In this study, the ResNset-18 network
was chosen as the backbone network and the experimental code
was implemented using the PyTorch framework. The training was
conducted on an NVIDIA RTX-3090 GPU. In this study, a pre-
trained ResNet-18model obtained by training on theMS-Celeb-1M
dataset was utilized. The optimizer used for training is the Adam
optimizer with a batch size of 128 and an initial learning rate of
0.0001. To achieve the best results, the model in this paper was
trained on all datasets for 200 epochs.

4.3. Ablation studies

In order to assess the effectiveness of FFRA-Net, this
section performed ablation experiments on the FM_RAF-
DB and SG_RAF-DB datasets. The experimental results
encompass the selection of feature fusion strategy, the value
of the weight hyperparameter, the impacts of the multi-scale
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FIGURE 4

Some image examples of FM_RAF-DB and SG_RAF-DB dataset.

TABLE 1 Evaluating various fusion strategies on the SG_RAF-DB dataset.

Fusion strategies Acc.(%)

Concate feature fusion 76.69

Add feature fusion 77.87

Weighted feature fusion 79.50

module and local attention module on the model, as well as
CAM visualization.

4.3.1. Selection of the feature fusion strategy
In this subsection, different fusion strategies are experimented

on the SG_RAF-DB dataset. Table 1 presents the comparison
results of three feature fusion strategies: splicing fusion, summing
fusion, and weighted fusion. Splicing fusion involves concatenating
two feature maps along the channel dimensions and subsequently
fusing the information from all channels through convolution.
Additive fusion directly adds the feature maps obtained from
two branches to create a combined feature map. Weighted
fusion assigns specific weights to the feature maps of different
branches based on additive fusion and then adds them together.
In this study, the weight for the local attention module is
empirically set to 0.6, as verified in subsequent subsections.
The results demonstrate that weighted fusion is a more suitable
fusion method.

4.3.2. The value of the weight hyperparameter λ

To balance the importance of multi-scale modules and local
attention modules, λ is used as a hyperparameter. The local
attention weight is set to λ, and the weight of the multiscale module
is set to 1 − λ. This experiment investigate different values of λ

ranging from 0.1 to 0.9 to examine its effect on FFRA-Net, and
the results are presented in Figure 5. When λ is set to 0.6, the
weight of the local attention branch is slightly higher than that
of the multi-scale branch, leading to the model achieving the best
performance.

FIGURE 5

Evaluation of di�erent λ values on the SG_RAF-DB dataset.

TABLE 2 Evaluation of multi-scale and local attention modules in

networks on the FM_RAF-DB and SG_RAF-DB datasets.

Multi-scale Local
attention

FM_RAF-DB SG_RAF-DB

- - 75.98% 77.44%

X - 76.86% 78.62%

- X 77.74% 79.37%

X X 77.87% 79.50%

4.3.3. E�ects of multi-scale modules and local
attention modules

An ablation analysis was conducted to verify the effectiveness
of the multi-scale module and the local attention module in FFRA-
Net. The results in Table 2 demonstrate that using either the multi-
scale module or the local attention module alone yields higher
accuracy compared to the baseline accuracy. Moreover, the local
attention module exhibits greater usefulness than the multi-scale
module. Ultimately, the model achieved the best performance by
employing both modules and integrating their features.

To provide a clearer understanding of the effect of the feature
fusionmodule, the study conducted CAMvisualization (Zhou et al.,
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FIGURE 6

Feature fusion and CAM visualization of ResNet-18. Images are from the test set of FM_RAF-DB and SG_RAF-DB datasets.

FIGURE 7

Confusion matrix results for baseline, multi-scale modules and FFRA-Net on the FM_RAF-DB test set.

FIGURE 8

The images were captured from the test set of the RAF-DB dataset, augmented with random occlusion.

2015) to validate its performance. Figure 6 displays the visualization
results of the baseline and feature fusion modules in the first
and second rows, respectively. In comparison to the traditional
ResNet-18, the CAM results obtained with feature fusion direct the
network’s attention toward locally significant regions. For the first

four images where faces are covered by masks, even though the
mouth is the primary region of the mask, the model predominantly
focuses on the eye region. Similarly, for the last four images where
faces are covered by sunglasses, despite the eye being the main
region of the mask, the model primarily attends to the mouth

Frontiers inNeurorobotics 08 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1250706
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Chen et al. 10.3389/fnbot.2023.1250706

region, which aligns with human perception. The results indicate
that methods in this paper effectively addresses the occlusion
problem.

4.4. Confusion matrix analysis

Confusion Matrix is a valuable tool for evaluating the
performance of a classification model. It displays the relationship
between the classification model’s predictions for different
categories and their corresponding true labels, with the table
numbers representing the number of predicted samples. The
subsection analyze the Confusion Matrix of the baseline, multi-
scale module, and FFRA method applied to the test set of the
FM_RAF-DB dataset. Figure 7 displays the Confusion Matrix.
FFRA Method significantly improves the recognition accuracy
of the neutral expression category. Neutral expressions, being
states without obvious emotional signals, may lack distinct facial
expression features compared to other expression categories.
However, FFRAMethod can effectively focus onmore accurate and
relevant features when recognizing neutral expressions, thereby
enabling the model to achieve higher recognition accuracy.

4.5. Assessment of the model’s
performance in real-world scenarios

To further validate the performance of the FFRAmodel in real-
world environments, the test set of the RAF-DB dataset was added
with random occlusion, as depicted in Figure 8. Themodel achieves
an accuracy of 86.43% on this dataset, surpassing the performance
of other FER methods listed in Table 3. This demonstrates the
outstanding performance of the model in real-world scenarios.

4.6. Comparison with previous results

In this section, FFRA-Net is compared with other state-of-the-
art methods using the FM_RAF-DB and SG_RAF-DB datasets.
Specifically, VGG-16 (Simonyan and Zisserman, 2014), ResNet-
50 (He et al., 2015), and MobileNetv2 (Sandler et al., 2018) are
models with larger parameter counts, deeper networks, and lighter
weights, respectively, while SCN (Wang et al., 2020) and MA-
Net (Zhao et al., 2021) are specifically designed for FER in the
wild. The experimental results in Table 4 demonstrate that FFRA-
Net outperforms the other FER models in terms of accuracy,
showcasing excellent performance.

FFRAmethod achieves an accuracy of 77.87% on the FM_RAF-
DB dataset and 79.50% on the SG_RAF-DB dataset. These
results surpass several existing mainstream methods and occluded
FER methods. The proposed FFRA-Net in this paper exhibits
outstanding performance in recognizing obscured expression
images.

The accuracy results of FFRA-Net and other FERmodels on the
RAF-DB and FERPLUS datasets are shown in Table 5. The FFRA
method achieves an accuracy of 88.66% on the RAF-DB dataset and
88.97% on the FERPLUS dataset. These results outperform several

TABLE 3 Comparison of performance with previous FER methods on the

test set of the RAF-DB dataset after incorporating random occlusion.

Method Acc.(%)

Baseline 81.62

SCN (Wang et al., 2020) 85.78

MA-Net (Zhao et al., 2021) 86.23

FFRA-Net (Ours) 86.43

The bold values are outcomes from model runs described in this paper.

TABLE 4 Performance comparison (%) with previous methods on

FM_RAF-DB and SG_RAF-DB.

Methods FM_RAF-DB SG_RAF-DB

VGG-16 (Simonyan and
Zisserman, 2014)

73.86 75.81

ResNet-50 (He et al., 2015) 74.32 75.88

MobileNetv2 (Sandler et al.,
2018)

73.14 75.46

SCN (Wang et al., 2020) 76.43 77.64

MA-Net (Zhao et al., 2021) 77.64 78.78

FFRA-Net(Ours) 77.87 79.50

The bold values are outcomes from model runs described in this paper.

TABLE 5 Performance comparison (%) with previous methods on RAF-DB

and FERPLUS.

Methods RAF-DB FERPLUS

gACNN (Li et al., 2019) 85.07 -

RAN (Wang K. et al., 2019) 86.90 88.55

SCN (Wang et al., 2020) 87.03 88.01

DACL (Farzaneh and Qi,
2021)

87.78 -

KTN (Li et al., 2021) 88.07 -

MA-Net (Zhao et al., 2021) 88.40 -

RUL (Zhang et al., 2021) - 88.75

DMUE (She et al., 2021) - 88.64

SeNet50 (Albanie et al., 2018) - 88.80

FFRA-Net(Ours) 88.66 88.97

The bold values are outcomes from model runs described in this paper.

existing FER methods in the wild. The results demonstrate that
the proposed method in this paper exhibits strong generalization
ability.

FFRA method achieves an accuracy of 88.66% on the RAF-DB
dataset and 88.97% on the FERPLUS dataset. These results surpass
several existing expression recognition methods. The results show
that the method proposed in this paper has a strong generalization
ability.

5. Conclusion

To solve the problem of occluded FER, a new feature fusion
architecture, called FFRA-Net, is proposed, which can learn a rich
diversity of global and local features. First, a multi-scale module is
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proposed to provide diverse global features. Second, an attention-
basedmechanism local attentionmodule is proposed, which assigns
higher weights to important facial regions and smaller weights
to irrelevant facial regions. Finally, a feature fusion module is
proposed, which uses a weighted approach to fuse global and
local features. Extensive experiments on four FER datasets show
that this method outperforms the existing FER methods. However,
the model requires further optimization in terms of parameter
reduction to alleviate computational overhead. A primary area of
future research is the investigation of lightweight techniques for
occluded FER.
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