34 research outputs found

    First-Principles Study on the Catalytic Role of Cerium Dioxide in the Conversion of Organic Compounds

    Get PDF
    Ceria is an earth-abundant material that has been widely used in heterogeneous catalysis, environmental catalysis, and energy applications thanks for its ability to readily convert between different oxidation states. The objective of this study is to theoretically elucidate the reaction mechanisms for the conversion of model organic compounds on ceria, in order to gain insights for the design of cost-effective and selective ceria-based catalysts. Acetaldehyde, acetic acid, and para-nitrophenyl phosphate monoester were selected as the model compounds to probe ceria surfaces. Density functional theory calculations can provide accurate predictions of adsorption and reaction energetics, which can be used to calculate the necessary kinetic parameters in the microkinetic model that can validate hypothesized reaction mechanisms. This methodology is also able to generate additional insights regarding the dominant surface species, the existence of transient surface species, and the role of active sites such as defects. Based on the spectroscopic evidence from surface science experiments, we were able to validate the proposed reaction mechanism for temperature programmed desorption of acetaldehyde and acetic acid on ceria surfaces. Particularly, the catalytic role of surface oxygen vacancy during the formation of ethylene, acetylene and crotonaldehyde in the AcH-TPD was examined. The desorption of crotonaldehyde is found to be the rate-limiting step. However, pre-existing oxygen vacancy is not required in the AA-TPD due to facile surface reduction induced by deprotonation of acetic acid. We found the ketene pathway was energetically more favorable than the acetone pathway under UHV condition. Our results showed that ceria can be effective in the dephosphorylation of selected monoesters including p-NPP, due to facile P-O ester bond scission. However, the subsequent step-wise hydration is found to be rate-limiting

    Novel Separation Strategy For Processing Biopyrolysis Liquids

    Get PDF
    The separation of pyrolysis bio-oil is important for its role in upgrading oil quality and acquiring commercial byproducts. A selective separation method for biopyrolysis liquids is developed in this work. Two parts in succession are involved as the first one aims at selectively removing some of the heaviest fractions from bio-oil. Chromatographic adsorption results show that Class C Fly ash and pyrolysis Bio-char have potential for this goal at \u3c300 ÂşC, byproduct like combined adsorbates / adsorbents could also be used directly in asphalt cement processes. Thereafter, the second part focuses on adsorbing light fractions like lighter acids and aldehydes selectively. Basic (modified) activated carbons display relatively low selectivity at ~250ÂşC, but they have better selectivity compared to unmodified activated carbons. Thus some carbon-coated mesoporous silica and alumina materials are also prepared for the adsorption of these light compounds in the future. The combination of the two parts of adsorptions would leave behind a middle distillate fraction which is the bio-oil fraction most amenable to catalytic upgrading, to either a fuel or chemical feedstock

    CPCL: Cross-Modal Prototypical Contrastive Learning for Weakly Supervised Text-based Person Re-Identification

    Full text link
    Weakly supervised text-based person re-identification (TPRe-ID) seeks to retrieve images of a target person using textual descriptions, without relying on identity annotations and is more challenging and practical. The primary challenge is the intra-class differences, encompassing intra-modal feature variations and cross-modal semantic gaps. Prior works have focused on instance-level samples and ignored prototypical features of each person which are intrinsic and invariant. Toward this, we propose a Cross-Modal Prototypical Contrastive Learning (CPCL) method. In practice, the CPCL introduces the CLIP model to weakly supervised TPRe-ID for the first time, mapping visual and textual instances into a shared latent space. Subsequently, the proposed Prototypical Multi-modal Memory (PMM) module captures associations between heterogeneous modalities of image-text pairs belonging to the same person through the Hybrid Cross-modal Matching (HCM) module in a many-to-many mapping fashion. Moreover, the Outlier Pseudo Label Mining (OPLM) module further distinguishes valuable outlier samples from each modality, enhancing the creation of more reliable clusters by mining implicit relationships between image-text pairs. Experimental results demonstrate that our proposed CPCL attains state-of-the-art performance on all three public datasets, with a significant improvement of 11.58%, 8.77% and 5.25% in Rank@1 accuracy on CUHK-PEDES, ICFG-PEDES and RSTPReid datasets, respectively. The code is available at https://github.com/codeGallery24/CPCL.Comment: 9 pages, 6 figure

    Influence of Fiber Shape and Volume Content on the Performance of Reactive Powder Concrete (RPC)

    No full text
    This research studied the influence of three types of open (short-straight, long-straight, semicircular) and three different shapes of closed steel fibers (triangular, rectangular, circular) with different fiber contents by volume (0, 0.5%, 1%, 1.5%, and 2%) on the working and mechanical performance of reactive powder concrete (RPC). The results indicated that (1) the number of steel fibers and the enclosed area formed by closed steel fibers would remarkably impact the performance of RPC; (2) the semicircular fiber improves RPC’s strength the most among the three open shapes; (3) the short-straight fiber works more effectively than the closed steel fibers; (4) the circular fiber works the most efficiently in improving RPC’s mechanical performance while the triangular ones have the least effect among the three closed steel fibers; (5) both the closed and open steel fibers improve their compressive strength more than their flexural strength; (6) the closed steel fiber works more efficiently in improving the flexural strength but less efficiently in improving the compressive strength; (7) the open steel fibers enhance the mechanical performance of RPC via their anchoring performance while the closed steel fibers work by confining the concrete; (8) the hybrid utilization of steel fibers improves RPC’s mechanical performance to a higher level via combing the advantages of open and closed steel fibers

    Influence of fiber shape and volume content on the performance of reactive powder concrete (RPC)

    No full text
    This research studied the influence of three types of open (short-straight, long-straight, semicircular) and three different shapes of closed steel fibers (triangular, rectangular, circular) with different fiber contents by volume (0, 0.5%, 1%, 1.5%, and 2%) on the working and mechanical performance of reactive powder concrete (RPC). The results indicated that (1) the number of steel fibers and the enclosed area formed by closed steel fibers would remarkably impact the performance of RPC; (2) the semicircular fiber improves RPC’s strength the most among the three open shapes; (3) the short-straight fiber works more effectively than the closed steel fibers; (4) the circular fiber works the most efficiently in improving RPC’s mechanical performance while the triangular ones have the least effect among the three closed steel fibers; (5) both the closed and open steel fibers improve their compressive strength more than their flexural strength; (6) the closed steel fiber works more efficiently in improving the flexural strength but less efficiently in improving the compressive strength; (7) the open steel fibers enhance the mechanical performance of RPC via their anchoring performance while the closed steel fibers work by confining the concrete; (8) the hybrid utilization of steel fibers improves RPC’s mechanical performance to a higher level via combing the advantages of open and closed steel fibers

    The relationships between bilingual learning, willingness to study abroad and convergent creativity

    No full text
    Convergent creativity is a form of creative thinking that uses existing knowledge or traditional methods to analyze available information and generate an appropriate solution. The differences in the performance of participants in convergent creativity caused by bilingual learning is a popular research area in creativity. A final sample of 68 participants was asked to complete the remote associates test (RAT). The results indicate that a moderate positive correlation exists between bilingual learning and convergent creativity. Students who want to study abroad perform better on the RAT than those who do not, and this effect is mediated by second language proficiency. These findings suggest that improving students’ English proficiency and increasing their opportunities to study abroad may be effective ways to promoting convergent creativity

    Estimation Strategy Utilization Is Modulated by Implicit Emotion Regulation: Evidence from Behavioral and Event-Related Potentials Studies

    No full text
    A large number of studies have studied the influence of emotional experience on an individual’s estimation performance, but the influence of implicit emotion regulation is still unknown. Participants were asked to complete the following tasks in order: idiom matching task, multiplication computational estimation task (MCE task), gender judgment task (GJ task), and emotional experience intensity assessment task. The words matching task was adopted to achieve the purpose of implicit emotion regulation (implicit reappraisal and implicit suppression). Behavioral results showed that implicit reappraisal and implicit suppression equally contributed to improving an individual’s estimation speed (but not ACC (accuracy)). The MCE task related ERP (event-related potential) results showed that the influence of implicit emotion regulation on estimation consisted of two phases. In the first phase (encoding phase), implicit reappraisal both enhanced (larger P1 amplitudes) and weakened (smaller N170 amplitudes) an individual’s encoding sensitivity, while implicit suppression enhanced an individual’s encoding sensitivity (larger P1 amplitudes). In the second phase (estimation strategies retrieval phase), implicit reappraisal (but not implicit suppression) cost more attention resources (larger LPC2 and LPC3 amplitudes). The present study suggested that both implicit reappraisal and implicit suppression contributed to improving an individual’s estimation performance, and the regulation effect of implicit suppression (vs. implicit reappraisal) was better

    Influence of the Concentration of Seawater on the Early Hydration Properties of Calcium Sulphoaluminate (CSA) Cement: A Preliminary Study

    No full text
    This research investigates the effect of seawater of different concentrations on the hydration process and microstructure of calcium sulphoaluminate (CSA) cement. It studies the CSA cement pastes via experiments carried out to determine the initial and final setting times, mechanical strength and chemical shrinkage with X-ray diffraction (XRD), scanning electron microscopy (SEM) and simultaneous differential thermal-thermogravimetric (DTA-TG) analysis. The DTA-TG and XRD results showed that the main hydration products were ettringite (AFt) and aluminum hydroxide in the CSA cement paste mixed with both freshwater and seawater, while a small amount of ettringite (AFt) became monosulfate (AFm) in the freshwater-mixed CSA cement. The SEM results demonstrate that seawater can improve the microstructure of CSA cement paste in the early stage of hydration (1 d) but impairs the microstructure of the CSA cement matrix in the later stage of hydration (7 d). The experimental results also indicate that a high concentration of seawater can extend the setting time, increase the chemical shrinkage and decrease the mechanical strength of CSA cement

    Estimation Strategy Selection Is Modulated by Snapshot Emotional Priming, but Not Math Anxiety

    No full text
    The present study explored the role of snapshot emotional priming and math anxiety in estimation strategy selection. Participants were asked to complete a two-digit multiplication estimation task (e.g., 34 × 67) under explicit (Experiment 1) and implicit (Experiment 2) snapshot emotional priming conditions by freely choosing to use DU (down-up, e.g., doing 30 × 70 = 2100 for 34 × 67) or UD (up-down, e.g., doing 40 × 60 = 2400 for 34 × 67) strategies to arrive as close as possible to the correct answer. In Experiment 1, individuals’ estimation performance was positively influenced by explicit happy priming (shorter RT (reaction time)), while not affected by explicit fear priming. In Experiment 2, individuals’ estimation ACC (accuracy) when using the UD strategy was negatively affected by both implicit happy and fear priming, but their RT when using DU and UD strategies was positively impacted by implicit happy priming. In both experiments, the correlations between math anxiety and estimation performance (ACC, RT, and strategy selection adaptivity) was not significant. The present study suggests that fear priming was not always detrimental to individuals’ estimation performance, and happy priming did not always universally improve individuals’ estimation performance. Additionally, estimation strategy selection was not influenced by math anxiety
    corecore