4,304 research outputs found
Effect of atomic ordering on hydrogen dissociation on Ni₃Fe surfaces
2008-2009 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
PMH15 BURDEN OF ILLNESS AMONG PATIENTS WITH ALZHEIMER'S DISEASE IN A COMMERCIALLY-INSURED POPULATION
Predictive value of high-sensitivity troponin-I for future adverse cardiovascular outcome in stable patients with type 2 diabetes mellitus
INTRODUCTION: High-sensitivity cardiac troponin I(hs-TnI) and T levels(hs-TnT) are sensitive biomarkers of cardiomyocyte turnover or necrosis. Prior studies of the predictive role of hs-TnT in type 2 diabetes mellitus(T2DM) patients have yielded conflicting results. This study aimed to determine whether hs-TnI, which is detectable in a higher proportion of normal subjects than hsTnT, is associated with a major adverse cardiovascular event(MACE) in T2DM patients. METHODS AND RESULTS: We compared hs-TnI level in stored serum samples from 276 consecutive patients (mean age 65 +/- 10 years; 57% male) with T2DM with that of 115 age-and sex-matched controls. All T2DM patients were prospectively followed up for at least 4 years for incidence of MACE including heart failure(HF), myocardial infarction(MI) and cardiovascular mortality. At baseline, 274(99%) patients with T2DM had detectable hs-TnI, and 57(21%) had elevated hs-TnI (male: 8.5 ng/L, female: 7.6 ng/L, above the 99th percentile in healthy controls). A total of 43 MACE occurred: HF(n = 18), MI(n = 11) and cardiovascular mortality(n = 14). Kaplan-Meier analysis showed that an elevated hs-TnI was associated with MACE, HF, MI and cardiovascular mortality. Although multivariate analysis revealed that an elevated hs-TnI independently predicted MACE, it had limited sensitivity(62.7%) and positive predictive value(38.5%). Contrary to this, a normal hs-TnI level had an excellent negative predictive value(92.2%) for future MACE in patients with T2DM. CONCLUSION: The present study demonstrates that elevated hs-TnI in patients with T2DM is associated with increased MACE, HF, MI and cardiovascular mortality. Importantly, a normal hs-TnI level has an excellent negative predictive value for future adverse cardiovascular events during long-term follow-up.published_or_final_versio
Genomic Expansion of Magnetotactic Bacteria Reveals an Early Common Origin of Magnetotaxis with Lineage-specific Evolution
The origin and evolution of magnetoreception, which in diverse prokaryotes and protozoa is known as magnetotaxis and enables these microorganisms to detect Earth’s magnetic field for orientation and navigation, is not well understood in evolutionary biology. The only known prokaryotes capable of sensing the geomagnetic field are magnetotactic bacteria (MTB), motile microorganisms that biomineralize intracellular, membrane-bounded magnetic single-domain crystals of either magnetite (Fe3O4) or greigite (Fe3S4) called magnetosomes. Magnetosomes are responsible for magnetotaxis in MTB. Here we report the first large-scale metagenomic survey of MTB from both northern and southern hemispheres combined with 28 genomes from uncultivated MTB. These genomes expand greatly the coverage of MTB in the Proteobacteria, Nitrospirae, and Omnitrophica phyla, and provide the first genomic evidence of MTB belonging to the Zetaproteobacteria and “Candidatus Lambdaproteobacteria” classes. The gene content and organization of magnetosome gene clusters, which are physically grouped genes that encode proteins for magnetosome biosynthesis and organization, are more conserved within phylogenetically similar groups than between different taxonomic lineages. Moreover, the phylogenies of core magnetosome proteins form monophyletic clades. Together, these results suggest a common ancient origin of iron-based (Fe3O4 and Fe3S4) magnetotaxis in the domain Bacteria that underwent lineage-specific evolution, shedding new light on the origin and evolution of biomineralization and magnetotaxis, and expanding significantly the phylogenomic representation of MTB
Investigation of the cerebral hemodynamic response function in single blood vessels by functional photoacoustic microscopy
The specificity of the hemodynamic response function (HRF) is determined spatially by the vascular architecture and temporally by the evolution of hemodynamic changes. Here, we used functional photoacoustic microscopy (fPAM) to investigate single cerebral blood vessels of rats after left forepaw stimulation. In this system, we analyzed the spatiotemporal evolution of the HRFs of the total hemoglobin concentration (HbT), cerebral blood volume (CBV), and hemoglobin oxygen saturation (SO2). Changes in specific cerebral vessels corresponding to various electrical stimulation intensities and durations were bilaterally imaged with 36 × 65-μm2 spatial resolution. Stimulation intensities of 1, 2, 6, and 10 mA were applied for periods of 5 or 15 s. Our results show that the relative functional changes in HbT, CBV, and SO2 are highly dependent not only on the intensity of the stimulation, but also on its duration. Additionally, the duration of the stimulation has a strong influence on the spatiotemporal characteristics of the HRF as shorter stimuli elicit responses only in the local vasculature (smaller arterioles), whereas longer stimuli lead to greater vascular supply and drainage. This study suggests that the current fPAM system is reliable for studying relative cerebral hemodynamic changes, as well as for offering new insights into the dynamics of functional cerebral hemodynamic changes in small animals. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE)
A Novel Strategy to Screen Bacillus Calmette-Guérin Protein Antigen Recognized by γδ TCR
BACKGROUND: Phosphoantigen was originally identified as the main γδ TCR-recognized antigen that could activate γδ T cells to promote immune protection against mycobacterial infection. However, new evidence shows that the γδ T cells activated by phosphoantigen can only provide partial immune protection against mycobacterial infection. In contrast, whole lysates of Mycobacterium could activate immune protection more potently, implying that other γδ TCR-recognized antigens that elicit protective immune responses. To date, only a few distinct mycobacterial antigens recognized by the γδ TCR have been characterized. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we established a new approach to screen epitopes or protein antigens recognized by the γδ TCR using Bacillus Calmette-Guérin- (BCG-) specific γ TCR transfected cells as probes to pan a 12-mer random-peptide phage-displayed library. Through binding assays and functional analysis, we identified a peptide (BP3) that not only binds to the BCG-specific γδ TCR but also effectively activates γδ T cells isolated from human subjects inoculated with BCG. Importantly, the γδ T cells activated by peptide BP3 had a cytotoxic effect on THP-1 cells infected with BCG. Moreover, the oxidative stress response regulatory protein (OXYS), a BCG protein that matches perfectly with peptide BP3 according to bioinformatics analysis, was confirmed as a ligand for the γδ TCR and was found to activate γδ T cells from human subjects inoculated with BCG. CONCLUSIONS/SIGNIFICANCE: In conclusion, our study provides a novel strategy to identify epitopes or protein antigens for the γδ TCR, and provides a potential means to screen mycobacterial vaccines or candidates for adjuvant
Insights from Amphioxus into the Evolution of Vertebrate Cartilage
Central to the story of vertebrate evolution is the origin of the vertebrate head, a problem difficult to approach using paleontology and comparative morphology due to a lack of unambiguous intermediate forms. Embryologically, much of the vertebrate head is derived from two ectodermal tissues, the neural crest and cranial placodes. Recent work in protochordates suggests the first chordates possessed migratory neural tube cells with some features of neural crest cells. However, it is unclear how and when these cells acquired the ability to form cellular cartilage, a cell type unique to vertebrates. It has been variously proposed that the neural crest acquired chondrogenic ability by recruiting proto-chondrogenic gene programs deployed in the neural tube, pharynx, and notochord. To test these hypotheses we examined the expression of 11 amphioxus orthologs of genes involved in neural crest chondrogenesis. Consistent with cellular cartilage as a vertebrate novelty, we find that no single amphioxus tissue co-expresses all or most of these genes. However, most are variously co-expressed in mesodermal derivatives. Our results suggest that neural crest-derived cartilage evolved by serial cooption of genes which functioned primitively in mesoderm
Relationship between diabetic retinopathy and subclinical myocardial dysfunction in patients with diabetic mellitus
Poster Session 1 - Imaging metabolic cardiomyopathy: abstract no. P637BACKGROUND: Patient with type 2 diabetes mellitus (T2DM) is associated with 2-5 fold higher risk of developing heart failure than those without. One of the proposed pathology leading to this is microvascular dysfunction. In concordance with this hypothesis, diabetic retinopathy, a specific manifestation of microvascular dysfunction, has been shown to be associated with heart failure in patients with T2DM. Nonetheless, the relationship between diabetic retinopathy with myocardial function is unclear. METHODS: 283 patients (mean age 63±9, 47% male) with type 2 diabetic mellitus (T2DM) without history of cardiovascular diseases was recruited ...postprin
Synthesis, structure, and magnetism in the ferromagnet La_{3}MnAs_{5}: Well-separated spin chains coupled via itinerant electrons
In this work, we systematically report the synthesis, structure, and magnetism of a compound of filled
anti-Mn3Si5 type La3MnAs5. It crystallizes in a hexagonal structure with the space group of P63/mcm (193).
The structure consists of face-sharing MnAs6 octahedral chains along the c axis, which are well separated by a
large distance of 8.9913 Å, demonstrating a strong one-dimensional (1D) structural character. Physical property
measurements indicate that La3MnAs5 is a ferromagnetic metal with TC ∼ 112 K. Due to the short-range
intrachain spin coupling, the susceptibility deviates from the Curie-Weiss behavior in a wide temperature
window and the magnetic entropy corresponding to the ferromagnetic transition is significantly lower than that
expected from the fully saturated state. The magnetic critical behavior studies show that La3MnAs5 can be
described by the three-dimensional Heisenberg model. The orbital hybridization between the 1D MnAs6 chain
and intermediate La atom near the Fermi level reveals that the itinerant electrons play a key role in transmitting
spin interaction among the MnAs6 spin chains. Our results indicate that La3MnAs5 is a rare ferromagnetic metal
with well-separated spin chains, which provides a good opportunity to study the mechanism of interchain spin
coupling via itinerant electrons
UNCLES: Method for the identification of genes differentially consistently co-expressed in a specific subset of datasets
Background: Collective analysis of the increasingly emerging gene expression datasets are required. The recently proposed binarisation of consensus partition matrices (Bi-CoPaM) method can combine clustering results from multiple datasets to identify the subsets of genes which are consistently co-expressed in all of the provided datasets in a tuneable manner. However, results validation and parameter setting are issues that complicate the design of such methods. Moreover, although it is a common practice to test methods by application to synthetic datasets, the mathematical models used to synthesise such datasets are usually based on approximations which may not always be sufficiently representative of real datasets. Results: Here, we propose an unsupervised method for the unification of clustering results from multiple datasets using external specifications (UNCLES). This method has the ability to identify the subsets of genes consistently co-expressed in a subset of datasets while being poorly co-expressed in another subset of datasets, and to identify the subsets of genes consistently co-expressed in all given datasets. We also propose the M-N scatter plots validation technique and adopt it to set the parameters of UNCLES, such as the number of clusters, automatically. Additionally, we propose an approach for the synthesis of gene expression datasets using real data profiles in a way which combines the ground-truth-knowledge of synthetic data and the realistic expression values of real data, and therefore overcomes the problem of faithfulness of synthetic expression data modelling. By application to those datasets, we validate UNCLES while comparing it with other conventional clustering methods, and of particular relevance, biclustering methods. We further validate UNCLES by application to a set of 14 real genome-wide yeast datasets as it produces focused clusters that conform well to known biological facts. Furthermore, in-silico-based hypotheses regarding the function of a few previously unknown genes in those focused clusters are drawn. Conclusions: The UNCLES method, the M-N scatter plots technique, and the expression data synthesis approach will have wide application for the comprehensive analysis of genomic and other sources of multiple complex biological datasets. Moreover, the derived in-silico-based biological hypotheses represent subjects for future functional studies.The National Institute for Health Research (NIHR) under its Programme Grants for Applied Research
Programme (Grant Reference Number RP-PG-0310-1004)
- …