8 research outputs found

    Protein 3D Graph Structure Learning for Robust Structure-based Protein Property Prediction

    Full text link
    Protein structure-based property prediction has emerged as a promising approach for various biological tasks, such as protein function prediction and sub-cellular location estimation. The existing methods highly rely on experimental protein structure data and fail in scenarios where these data are unavailable. Predicted protein structures from AI tools (e.g., AlphaFold2) were utilized as alternatives. However, we observed that current practices, which simply employ accurately predicted structures during inference, suffer from notable degradation in prediction accuracy. While similar phenomena have been extensively studied in general fields (e.g., Computer Vision) as model robustness, their impact on protein property prediction remains unexplored. In this paper, we first investigate the reason behind the performance decrease when utilizing predicted structures, attributing it to the structure embedding bias from the perspective of structure representation learning. To study this problem, we identify a Protein 3D Graph Structure Learning Problem for Robust Protein Property Prediction (PGSL-RP3), collect benchmark datasets, and present a protein Structure embedding Alignment Optimization framework (SAO) to mitigate the problem of structure embedding bias between the predicted and experimental protein structures. Extensive experiments have shown that our framework is model-agnostic and effective in improving the property prediction of both predicted structures and experimental structures. The benchmark datasets and codes will be released to benefit the community

    Interaction of Di-2-pyridylketone 2-pyridine Carboxylic Acid Hydrazone and Its Copper Complex with BSA: Effect on Antitumor Activity as Revealed by Spectroscopic Studies

    No full text
    The drug, di-2-pyridylketone-2-pyridine carboxylic acid hydrazone (DPPCAH) and its copper complex (DPPCAH-Cu) exhibit significant antitumor activity. However, the mechanism of their pharmacological interaction with the biological molecule bovine serum albumin (BSA) remains poorly understood. The present study elucidates the interactions between the drug and BSA through MTT assays, spectroscopic methods and molecular docking analysis. Our results indicate that BSA could attenuate effect on the cytotoxicity of DPPCAH, but not DPPCAH-Cu. Data from fluorescence quenching measurements demonstrated that both DPPCAH and DPPCAH-Cu could bind to BSA, with a reversed effect on the environment of tryptophan residues in polarity. CD spectra revealed that the DPPCAH-Cu exerted a slightly stronger effect on the secondary structure of BSA than DPPCAH. The association constant of DPPCAH with BSA was greater than that of DPPCAH-Cu. Docking studies indicated that the binding of DPPCAH to BSA involved a greater number of hydrogen bonds compared to DPPCAH-Cu. The calculated distances between bound ligands and tryptophans in BSA were in agreement with fluorescence resonance energy transfer results. Thus, the binding affinity of the drug (DPPCAH or DPPCAH-Cu) with BSA partially contributes to its antitumor activity; the greater the drug affinity is to BSA, the less is its antitumor activity

    Palmitic Acid Curcumin Ester Facilitates Protection of Neuroblastoma against Oligomeric Aβ40 Insult

    No full text
    Background/Aims: The generation of reactive oxygen species (ROS) caused by amyloid-β (Aβ) is considered to be one of mechanisms underlying the development of Alzheimer’s disease. Curcumin can attenuate Aβ-induced neurotoxicity through ROS scavenging, but the protective effect of intracellular curcumin on neurocyte membranes against extracellular Aβ may be compromised. To address this issue, we synthesized a palmitic acid curcumin ester (P-curcumin) which can be cultivated on the cell membrane and investigated the neuroprotective effect of P-curcumin and its interaction with Aβ. Methods: P-curcumin was prepared through chemical synthesis. Its structure was determined via nuclear magnetic resonance (NMR) and high-resolution mass spectrometry (HRMS). An MTT assay was used to assess Aβ cytotoxicity and the protective effect of P-curcumin on SH-SY5Y cells. The effect of P-curcumin on Aβ-induced ROS production in vitro and in vivo were assessed based on changes in dichlorofluorescein (DCF) fluorescence. A spectrophotometric method was employed to detect lipid peroxidation. To mimic the interaction of P-curcumin on cell membranes with Aβ, liposomes were prepared by thin film method. Finally, the interactions between free P-curcumin and P-curcumin cultivated on liposomes and Aβ were determined via spectrophotometry. Results: A novel derivative, palmitic acid curcumin ester was prepared and characterized. This curcumin, cultivated on the membranes of neurocytes, may prevent Aβ-mediated ROS production and may inhibit the direct interaction between Aβ and the cellular membrane. Furthermore, P-curcumin could scavenge Aβ-mediated ROS as curcumin in vitro and in vivo, and had the potential to prevent lipid peroxidation. Morphological analyses showed that P-curcumin was better than curcumin at protecting cell shape. To examine P-curcumin’s ability to attenuate direct interaction between Aβ and cell membranes, the binding affinity of Aβ to curcumin and P-curcumin was determined. The association constants for free P-curcumin and curcumin were 7.66 × 104 M-1 and 7.61 × 105 M-1, respectively. In the liposome-trapped state, the association constants were 3.71 × 105 M-1 for P-curcumin and 1.44× 106 M-1 for curcumin. With this data, the thermodynamic constants of P-curcumin association with soluble Aβ (ΔH, ΔS, and ΔG) were also determined. Conclusion: Cultivated curcumin weakened the direct interaction between Aβ and cell membranes and showed greater neuroprotective effects against Aβ insult than free curcumin

    Table_1_Research on application of radiomics in glioma: a bibliometric and visual analysis.pdf

    No full text
    BackgroundWith the continuous development of medical imaging informatics technology, radiomics has become a new and evolving field in medical applications. Radiomics aims to be an aid to support clinical decision making by extracting quantitative features from medical images and has a very wide range of applications. The purpose of this study was to perform a bibliometric and visual analysis of scientific results and research trends in the research application of radiomics in glioma.MethodsWe searched the Web of Science Core Collection (WOScc) for publications related to glioma radiomics. A bibliometric and visual analysis of online publications in this field related to countries/regions, authors, journals, references and keywords was performed using CiteSpace and R software.ResultsA total of 587 relevant literature published from 2012 to September 2022 were retrieved in WOScc, and finally a total of 484 publications were obtained according to the filtering criteria, including 393 (81.20%) articles and 91 (18.80%) reviews. The number of relevant publications increases year by year. The highest number of publications was from the USA (171 articles, 35.33%) and China (170 articles, 35.12%). The research institution with the highest number of publications was Chinese Acad Sci (24), followed by Univ Penn (22) and Fudan Univ (21). WANG Y (27) had the most publications, followed by LI Y (22), and WANG J (20). Among the 555 co-cited authors, LOUIS DN (207) and KICKINGEREDER P (207) were the most cited authors. FRONTIERS IN ONCOLOGY (42) was the most published journal and NEURO-ONCOLOGY (412) was the most co-cited journal. The most frequent keywords in all publications included glioblastoma (187), survival (136), classification (131), magnetic resonance imaging (113), machine learning (100), tumor (82), and feature (79), central nervous system (66), IDH (57), and radiomics (55). Cluster analysis was performed on the basis of keyword co-occurrence, and a total of 16 clusters were formed, indicating that these directions are the current hotspots of radiomics research applications in glioma and may be the future directions of continuous development.ConclusionIn the past decade, radiomics has received much attention in the medical field and has been widely used in clinical research applications. Cooperation and communication between countries/regions need to be enhanced in future research to promote the development of radiomics in the field of medicine. In addition, the application of radiomics has improved the accuracy of pre-treatment diagnosis, efficacy prediction and prognosis assessment of glioma and helped to promote the development into precision medicine, the future still faces many challenges.</p

    N1-Methyladenosine modification of mRNA regulates neuronal gene expression and oxygen glucose deprivation/reoxygenation induction

    No full text
    Abstract N1-Methyladenosine (m1A) is an abundant modification of transcripts, plays important roles in regulating mRNA structure and translation efficiency, and is dynamically regulated under stress. However, the characteristics and functions of mRNA m1A modification in primary neurons and oxygen glucose deprivation/reoxygenation (OGD/R) induced remain unclear. We first constructed a mouse cortical neuron OGD/R model and then used methylated RNA immunoprecipitation (MeRIP) and sequencing technology to demonstrate that m1A modification is abundant in neuron mRNAs and dynamically regulated during OGD/R induction. Our study suggests that Trmt10c, Alkbh3, and Ythdf3 may be m1A-regulating enzymes in neurons during OGD/R induction. The level and pattern of m1A modification change significantly during OGD/R induction, and differential methylation is closely associated with the nervous system. Our findings show that m1A peaks in cortical neurons aggregate at both the 5’ and 3’ untranslated regions. m1A modification can regulate gene expression, and peaks in different regions have different effects on gene expression. By analysing m1A-seq and RNA-seq data, we show a positive correlation between differentially methylated m1A peaks and gene expression. The correlation was verified by using qRT-PCR and MeRIP-RT-PCR. Moreover, we selected human tissue samples from Parkinson’s disease (PD) and Alzheimer’s disease (AD) patients from the Gene Expression Comprehensive (GEO) database to analyse the selected differentially expressed genes (DEGs) and differential methylation modification regulatory enzymes, respectively, and found similar differential expression results. We highlight the potential relationship between m1A modification and neuronal apoptosis following OGD/R induction. Furthermore, by mapping mouse cortical neurons and OGD/R-induced modification characteristics, we reveal the important role of m1A modification in OGD/R and gene expression regulation, providing new ideas for research on neurological damage
    corecore