20 research outputs found
Network Topologies and Dynamics Leading to Endotoxin Tolerance and Priming in Innate Immune Cells
The innate immune system, acting as the first line of host defense, senses
and adapts to foreign challenges through complex intracellular and
intercellular signaling networks. Endotoxin tolerance and priming elicited by
macrophages are classic examples of the complex adaptation of innate immune
cells. Upon repetitive exposures to different doses of bacterial endotoxin
(lipopolysaccharide) or other stimulants, macrophages show either suppressed or
augmented inflammatory responses compared to a single exposure to the
stimulant. Endotoxin tolerance and priming are critically involved in both
immune homeostasis and the pathogenesis of diverse inflammatory diseases.
However, the underlying molecular mechanisms are not well understood. By means
of a computational search through the parameter space of a coarse-grained
three-node network with a two-stage Metropolis sampling approach, we enumerated
all the network topologies that can generate priming or tolerance. We
discovered three major mechanisms for priming (pathway synergy, suppressor
deactivation, activator induction) and one for tolerance (inhibitor
persistence). These results not only explain existing experimental
observations, but also reveal intriguing test scenarios for future experimental
studies to clarify mechanisms of endotoxin priming and tolerance.Comment: 15 pages, 8 figures, submitte
Point Fields of Last Passage Percolation and Coalescing Fractional Brownian Motions
We consider large-scale point fields which naturally appear in the context of
the Kardar-Parisi-Zhang (KPZ) phenomenon. Such point fields are geometrical
objects formed by points of mass concentration, and by shocks separating the
sources of these points. We introduce similarly defined point fields for
processes of coalescing fractional Brownian motions (cfBm). The case of the
Hurst index 2/3 is of particular interest for us since, in this case, the power
law of the density decay is the same as that in the KPZ phenomenon. In this
paper, we present strong numerical evidence that statistical properties of
points fields in these two different settings are very similar. We also discuss
theoretical arguments in support of the conjecture that they are exactly the
same in the large-time limit. This would indicate that two objects may, in
fact, belong to the same universality class
Screening and bioinformatics analysis of a ceRNA network based on the circular RNAs, miRNAs, and mRNAs in pan‐cancer
Abstract Background The pan‐cancer analysis has recently brought us into a novel level of cancer research. Nowadays, the Circular RNAs (circRNAs) is becoming increasingly important in the occurrence and progression of tumors. Nevertheless, the specific expression patterns and functions of circRNAs in the pan‐cancer remains unclear. Here we aimed to explore the expression patterns and functions of circRNAs in pan‐cancer. Methods We combined our microarray with seven circRNA arrays from the Gene Expression Omnibus (GEO) database and transcriptome profiles were acquired from The Cancer Genome Atlas (TCGA) database. A circRNA‐miRNA‐mRNA network was created and analyzed using multiple bioinformatic approaches including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, Search Tool for the Retrieval of Interacting Genes (STRING) database, cytoHubba and MCODE app. Cell function assays including CCK‐8 analysis, colony formation, and transwell assay were used to explore pan‐circRNAs’ functions. Results A panel of 6 circRNAs, 11 miRNAs, and 318 mRNAs was found to be differentially expressed (DE) in pan‐cancer. A circRNA‐miRNA‐mRNA network was also constructed. Then, a circRNA‐miRNA‐hub gene network was created according to 5 pan‐circRNAs, 8 pan‐miRNAs, and 16 pan‐mRNAs. Enrichment analysis pointed out the possible association of DEmRNAs with pan‐cancer is transcriptional misregulation in cancer. Overexpression of hsa_circ_0004639 and silence of hsa_circ_0008310 can inhibit the malignant biological properties of cancer cells. Conclusions Six pan‐circRNAs were discovered and their regulating mechanisms were predicted. Those findings together will give a new insight into pan‐cancer research and present potential therapy targeting as well as promising biomarkers
The Study of a Novel Paeoniflorin-Converting Enzyme from Cunninghamella blakesleeana
Paeoniflorin is a glycoside compound found in Paeonia lactiflora Pall that is used in traditional herbal medicine and shows various protective effects on the cardio-cerebral vascular system. It has been reported that the pharmacological effects of paeoniflorin might be generated by its metabolites. However, the bioavailability of paeoniflorin by oral administration is low, which greatly limits its clinical application. In this paper, a paeoniflorin-converting enzyme gene (G6046, GenBank accession numbers: OP856858) from Cunninghamella blakesleeana (AS 3.970) was identified by comparative analysis between MS analysis and transcriptomics. The expression, purification, enzyme activity, and structure of the conversion products produced by this paeoniflorin-converting enzyme were studied. The optimal conditions for the enzymatic activity were found to be pH 9, 45 °C, resulting in a specific enzyme activity of 14.56 U/mg. The products were separated and purified by high-performance counter-current chromatography (HPCCC). Two main components were isolated and identified, 2-amino-2-p-hydroxymethyl-methyl alcohol-benzoate (tirs-benzoate) and 1-benzoyloxy-2,3-propanediol (1-benzoyloxypropane-2,3-diol), via UPLC-Q-TOF-MS and NMR. Additionally, paeoniflorin demonstrated the ability to metabolize into benzoic acid via G6046 enzyme, which might exert antidepressant effects through the blood–brain barrier into the brain
Structural Colored Fabric Based on Monodisperse Cu<sub>2</sub>O Microspheres
Structural-colored fabrics have been attracting much attention due to their eco-friendliness, dyelessness, and anti-fading properties. Monodisperse microspheres of metal, metal oxide, and semiconductors are promising materials for creating photonic crystals and structural colors owing to their high refractive indices. Herein, Cu2O microspheres were prepared by a two-step reduction method at room temperature; the size of Cu2O microspheres was controlled by changing the molar ratio of citrate to Cu2+; and the size of Cu2O microspheres was tuned from 275 nm to 190 nm. The Cu2O microsphere dispersions were prepared with the monodispersity of Cu2O microspheres. Furthermore, the effect of the concentration of Cu2O microsphere and poly(butyl acrylate) on the structural color was also evaluated. Finally, the stability of the structural color against friction and bending was also tested. The results demonstrated that the different structural colors of fabrics were achieved by adjusting the size of the Cu2O microsphere, and the color fastness of the structural color was improved by using poly(butyl acrylate) as the adhesive
The Study of a Novel Paeoniflorin-Converting Enzyme from <i>Cunninghamella blakesleeana</i>
Paeoniflorin is a glycoside compound found in Paeonia lactiflora Pall that is used in traditional herbal medicine and shows various protective effects on the cardio-cerebral vascular system. It has been reported that the pharmacological effects of paeoniflorin might be generated by its metabolites. However, the bioavailability of paeoniflorin by oral administration is low, which greatly limits its clinical application. In this paper, a paeoniflorin-converting enzyme gene (G6046, GenBank accession numbers: OP856858) from Cunninghamella blakesleeana (AS 3.970) was identified by comparative analysis between MS analysis and transcriptomics. The expression, purification, enzyme activity, and structure of the conversion products produced by this paeoniflorin-converting enzyme were studied. The optimal conditions for the enzymatic activity were found to be pH 9, 45 °C, resulting in a specific enzyme activity of 14.56 U/mg. The products were separated and purified by high-performance counter-current chromatography (HPCCC). Two main components were isolated and identified, 2-amino-2-p-hydroxymethyl-methyl alcohol-benzoate (tirs-benzoate) and 1-benzoyloxy-2,3-propanediol (1-benzoyloxypropane-2,3-diol), via UPLC-Q-TOF-MS and NMR. Additionally, paeoniflorin demonstrated the ability to metabolize into benzoic acid via G6046 enzyme, which might exert antidepressant effects through the blood–brain barrier into the brain
Simultaneous removal of organic micropollutants and metals from water by a multifunctional β-cyclodextrin polymer-supported-polyaniline composite
The occurrence of diverse pollutants in water resources across the globe, including organic micropollutants and heavy metals, has challenged the efficacy of many existing water treatment processes. Various materials and media have been developed for removal of these compounds, but few have the capacity to remove multiple contaminants which are typically present in real water sources. Here we report on a novel sorbent (PANI@PCDP) for the simultaneous removal of organic micropollutants and heavy metals during a single process. Cr(VI) and bisphenol A (BPA) were selected as target pollutants due to their frequent occurrence in aquatic environments and the significant health risks they pose. PANI@PCDP exhibited a high level of performance for removal of BPA and total Cr at pH 6 for initial concentrations of 0.5–100 mg/L for Cr(VI) and 0.228–22.8 mg/L for BPA. Up to 98 % Cr was removed at pH 6 through the adsorption and reduction of Cr(VI), followed by the sequestration of the generated Cr(III). In addition, BPA could be captured by PANI@PCDP at an adsorption rate of 1.4 × 10-1 g mg−1 min−1 as a result of the fast formation of complexes with the media. When the PANI@PCDP media was tested on a wider variety of emerging organic micropollutants (including chlorinated aromatic compounds, simple aromatics, and pharmaceuticals) good removal was observed. Such performance benefits arise from the integration of porous β-cyclodextrin polymers with polyaniline, which provides the PANI@PCDP with multiple binding sites for contaminant removal. In addition, the PANI@PCDP can be regenerated at least five times without loss in performance using a facile procedure, providing evidence for its practical application in water treatment
Details of the three priming mechanisms.
<p>(A) Backbone motifs (topological features shared by most of the good parameter sets) of each priming mechanism (see <a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002526#pcbi.1002526.s003" target="_blank">Figure S3</a> and <a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002526#pcbi.1002526.s012" target="_blank">Text S1</a> for details). The width of a line is proportional to the mean value of the corresponding <i>ω<sub>ji</sub></i> among data sets under each priming mechanism. The “slow” and “fast” time scales reflect the values of γ<i><sub>j</sub></i> in comparison to γ<sub>3</sub> = 1. (B–D) Typical time courses and corresponding phase space trajectories with or without LD pretreatment. Bistable results for AI and SD are shown in <a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002526#pcbi.1002526.s005" target="_blank">Figure S5</a>.</p