295 research outputs found

    Primary reconstruction of ACL and PMC of the knee

    Get PDF

    SAMO: Speaker Attractor Multi-Center One-Class Learning for Voice Anti-Spoofing

    Full text link
    Voice anti-spoofing systems are crucial auxiliaries for automatic speaker verification (ASV) systems. A major challenge is caused by unseen attacks empowered by advanced speech synthesis technologies. Our previous research on one-class learning has improved the generalization ability to unseen attacks by compacting the bona fide speech in the embedding space. However, such compactness lacks consideration of the diversity of speakers. In this work, we propose speaker attractor multi-center one-class learning (SAMO), which clusters bona fide speech around a number of speaker attractors and pushes away spoofing attacks from all the attractors in a high-dimensional embedding space. For training, we propose an algorithm for the co-optimization of bona fide speech clustering and bona fide/spoof classification. For inference, we propose strategies to enable anti-spoofing for speakers without enrollment. Our proposed system outperforms existing state-of-the-art single systems with a relative improvement of 38% on equal error rate (EER) on the ASVspoof2019 LA evaluation set

    Phase perturbation improves channel robustness for speech spoofing countermeasures

    Full text link
    In this paper, we aim to address the problem of channel robustness in speech countermeasure (CM) systems, which are used to distinguish synthetic speech from human natural speech. On the basis of two hypotheses, we suggest an approach for perturbing phase information during the training of time-domain CM systems. Communication networks often employ lossy compression codec that encodes only magnitude information, therefore heavily altering phase information. Also, state-of-the-art CM systems rely on phase information to identify spoofed speech. Thus, we believe the information loss in the phase domain induced by lossy compression codec degrades the performance of the unseen channel. We first establish the dependence of time-domain CM systems on phase information by perturbing phase in evaluation, showing strong degradation. Then, we demonstrated that perturbing phase during training leads to a significant performance improvement, whereas perturbing magnitude leads to further degradation.Comment: 5 pages; Accepted to INTERSPEECH 202

    SingFake: Singing Voice Deepfake Detection

    Full text link
    The rise of singing voice synthesis presents critical challenges to artists and industry stakeholders over unauthorized voice usage. Unlike synthesized speech, synthesized singing voices are typically released in songs containing strong background music that may hide synthesis artifacts. Additionally, singing voices present different acoustic and linguistic characteristics from speech utterances. These unique properties make singing voice deepfake detection a relevant but significantly different problem from synthetic speech detection. In this work, we propose the singing voice deepfake detection task. We first present SingFake, the first curated in-the-wild dataset consisting of 28.93 hours of bonafide and 29.40 hours of deepfake song clips in five languages from 40 singers. We provide a train/val/test split where the test sets include various scenarios. We then use SingFake to evaluate four state-of-the-art speech countermeasure systems trained on speech utterances. We find these systems lag significantly behind their performance on speech test data. When trained on SingFake, either using separated vocal tracks or song mixtures, these systems show substantial improvement. However, our evaluations also identify challenges associated with unseen singers, communication codecs, languages, and musical contexts, calling for dedicated research into singing voice deepfake detection. The SingFake dataset and related resources are available online.Comment: Submitted to ICASSP 202

    RL-Duet: Online Music Accompaniment Generation Using Deep Reinforcement Learning

    Full text link
    This paper presents a deep reinforcement learning algorithm for online accompaniment generation, with potential for real-time interactive human-machine duet improvisation. Different from offline music generation and harmonization, online music accompaniment requires the algorithm to respond to human input and generate the machine counterpart in a sequential order. We cast this as a reinforcement learning problem, where the generation agent learns a policy to generate a musical note (action) based on previously generated context (state). The key of this algorithm is the well-functioning reward model. Instead of defining it using music composition rules, we learn this model from monophonic and polyphonic training data. This model considers the compatibility of the machine-generated note with both the machine-generated context and the human-generated context. Experiments show that this algorithm is able to respond to the human part and generate a melodic, harmonic and diverse machine part. Subjective evaluations on preferences show that the proposed algorithm generates music pieces of higher quality than the baseline method
    • …
    corecore