192 research outputs found

    Continuous Layout Editing of Single Images with Diffusion Models

    Full text link
    Recent advancements in large-scale text-to-image diffusion models have enabled many applications in image editing. However, none of these methods have been able to edit the layout of single existing images. To address this gap, we propose the first framework for layout editing of a single image while preserving its visual properties, thus allowing for continuous editing on a single image. Our approach is achieved through two key modules. First, to preserve the characteristics of multiple objects within an image, we disentangle the concepts of different objects and embed them into separate textual tokens using a novel method called masked textual inversion. Next, we propose a training-free optimization method to perform layout control for a pre-trained diffusion model, which allows us to regenerate images with learned concepts and align them with user-specified layouts. As the first framework to edit the layout of existing images, we demonstrate that our method is effective and outperforms other baselines that were modified to support this task. Our code will be freely available for public use upon acceptance

    Few-shot Object Detection in Remote Sensing: Lifting the Curse of Incompletely Annotated Novel Objects

    Full text link
    Object detection is an essential and fundamental task in computer vision and satellite image processing. Existing deep learning methods have achieved impressive performance thanks to the availability of large-scale annotated datasets. Yet, in real-world applications the availability of labels is limited. In this context, few-shot object detection (FSOD) has emerged as a promising direction, which aims at enabling the model to detect novel objects with only few of them annotated. However, many existing FSOD algorithms overlook a critical issue: when an input image contains multiple novel objects and only a subset of them are annotated, the unlabeled objects will be considered as background during training. This can cause confusions and severely impact the model's ability to recall novel objects. To address this issue, we propose a self-training-based FSOD (ST-FSOD) approach, which incorporates the self-training mechanism into the few-shot fine-tuning process. ST-FSOD aims to enable the discovery of novel objects that are not annotated, and take them into account during training. On the one hand, we devise a two-branch region proposal networks (RPN) to separate the proposal extraction of base and novel objects, On another hand, we incorporate the student-teacher mechanism into RPN and the region of interest (RoI) head to include those highly confident yet unlabeled targets as pseudo labels. Experimental results demonstrate that our proposed method outperforms the state-of-the-art in various FSOD settings by a large margin. The codes will be publicly available at https://github.com/zhu-xlab/ST-FSOD

    Uplink Sensing Using CSI Ratio in Perceptive Mobile Networks

    Full text link
    Uplink sensing in perceptive mobile networks (PMNs), which uses uplink communication signals for sensing the environment around a base station, faces challenging issues of clock asynchronism and the requirement of a line-of-sight (LOS) path between transmitters and receivers. The channel state information (CSI) ratio has been applied to resolve these issues, however, current research on the CSI ratio is limited to Doppler estimation in a single dynamic path. This paper proposes an advanced parameter estimation scheme that can extract multiple dynamic parameters, including Doppler frequency, angle-of-arrival (AoA), and delay, in a communication uplink channel and completes the localization of multiple moving targets. Our scheme is based on the multi-element Taylor series of the CSI ratio that converts a nonlinear function of sensing parameters to linear forms and enables the applications of traditional sensing algorithms. Using the truncated Taylor series, we develop novel multiple-signal-classification grid searching algorithms for estimating Doppler frequencies and AoAs and use the least-square method to obtain delays. Both experimental and simulation results are provided, demonstrating that our proposed scheme can achieve good performances for sensing both single and multiple dynamic paths, without requiring the presence of a LOS path

    New Developments in Aromatic Halogenation, Borylation, and Cyanation

    Get PDF
    Several green procedures have been developed for synthesizing functionalized aromatics: i) AuCl3-catalyzed halogenation of aromatic compounds, including aryl boronates; ii) Fe2O3-catalyzed direct aromatic C–H bond borylation; iii) Pd-catalyzed direct cyanation of indoles; iv) direct conversion of arylamines to pinacol boronates

    Identification of Potential Key Genes Associated With the Pathogenesis and Prognosis of Gastric Cancer Based on Integrated Bioinformatics Analysis

    Get PDF
    Background and Objective: Despite striking advances in multimodality management, gastric cancer (GC) remains the third cause of cancer mortality globally and identifying novel diagnostic and prognostic biomarkers is urgently demanded. The study aimed to identify potential key genes associated with the pathogenesis and prognosis of GC.Methods: Differentially expressed genes between GC and normal gastric tissue samples were screened by an integrated analysis of multiple gene expression profile datasets. Key genes related to the pathogenesis and prognosis of GC were identified by employing protein–protein interaction network and Cox proportional hazards model analyses.Results: We identified nine hub genes (TOP2A, COL1A1, COL1A2, NDC80, COL3A1, CDKN3, CEP55, TPX2, and TIMP1) which might be tightly correlated with the pathogenesis of GC. A prognostic gene signature consisted of CST2, AADAC, SERPINE1, COL8A1, SMPD3, ASPN, ITGBL1, MAP7D2, and PLEKHS1 was constructed with a good performance in predicting overall survivals.Conclusion: The findings of this study would provide some directive significance for further investigating the diagnostic and prognostic biomarkers to facilitate the molecular targeting therapy of GC

    Dynamic Responses of Embedded Rock Pile Groups due to Rock Burst considering Coupled Pile-to-Pile Interaction

    Get PDF
    AbstractThis note presents an analytical solution to investigate the dynamic behavior of pile groups of embedded rock due to rock burst, which takes into account the interaction between piles. The energy generated by the rock burst propagates through the soil in the form of stress waves. It is transmitted to the pile foundation through the interaction between the soil around the pile and the pile. For rock-socketed piles, the condition of pile tip fixing is considered. The horizontal dynamic response calculation model of the pile group is established, and the analytical forms of the pile group stiffness and pile group interaction factor are obtained. In addition, the effect of saturated soil parameters on the dynamic response of pile groups are discussed
    • …
    corecore