115 research outputs found

    Combined denoising filter for fringe pattern in electronic speckle shearing pattern interferometry

    Get PDF
    We propose an effective image denoising filter that combines an improved spin filter (ISF) and wave atoms thresholding (WA) to remove the noise of fringe patterns in electronic speckle shearing pattern interferometry. The WA is first employed to denoise the fringe to save the processing time, and then the ISF is further used to remove noise of the denoised image using WA to obtain a better denoising performance. The performance of our proposed approach is evaluated by using both numerically simulated and experimental fringes. At the same time, three figures of merit for denoised fringes are also calculated to quantify the performance of the combined denoising filter. The denoised results produced by ISF, WA, and bilateral filtering are compared. The comparisons show that our proposed method can effectively remove noise and an improvement of 12 s in processing time and 0.3 in speckle index value is obtained with respect to ISF

    Phase noise influence in long-range coherent optical OFDM systems with delay detection, IFFT multiplexing and FFT demodulation

    Get PDF
    We present a study of the influence of dispersion induced phase noise for CO-OFDM systems using FFT multiplexing/IFFT demultiplexing techniques (software based). The software based system provides a method for a rigorous evaluation of the phase noise variance caused by Common Phase Error (CPE) and Inter-Carrier Interference (ICI) including - for the first time to our knowledge - in explicit form the effect of equalization enhanced phase noise (EEPN). This, in turns, leads to an analytic BER specification. Numerical results focus on a CO-OFDM system with 10-25 GS/s QPSK channel modulation. A worst case constellation configuration is identified for the phase noise influence and the resulting BER is compared to the BER of a conventional single channel QPSK system with the same capacity as the CO-OFDM implementation. Results are evaluated as a function of transmission distance. For both types of systems, the phase noise variance increases significantly with increasing transmission distance. For a total capacity of 400 (1000) Gbit/s, the transmission distance to have the BER < 10-2 for the worst case CO-OFDM design is less than 800 and 460 km, respectively, whereas for a single channel QPSK system it is less than 1400 and 560 km

    Analytical estimation in differential optical transmission systems influenced by equalization enhanced phase noise

    Get PDF
    An analytical model is presented for assessing the performance of the bit-error-rate (BER) in the differential m-level phase shift keying (m-PSK) transmission systems, where the influence of equalization enhanced phase noise (EEPN) has been considered. Theoretical analysis has been carried out in differential quadrature phase shift keying (DQPSK), differential 8-PSK (D8PSK), and differential 16-PSK (D16PSK) optical transmission systems. The influence of EEPN on the BER performance, in term of signal-to-noise ratio (SNR), are investigated for different fiber dispersion, LO laser linewidths, symbol rates, and modulation formats. Our analytical model achieves a good agreement with previously reported EEPN induced BER floors, and can give an accurate prediction for the DQPSK system, and a leading-order approximation for the D8PSK and the D16PSK systems

    Digital Adaptive Carrier Phase Estimation in Multi-Level Phase Shift Keying Coherent Optical Communication Systems

    Get PDF
    The analysis of adaptive carrier phase estimation is investigated in long-haul high speed n-level phase shift keying (n-PSK) optical fiber communication systems based on the one-tap normalized least-mean-square (LMS) algorithm. The close-form expressions for the estimated carrier phase and the bit-error-rate floor have been derived in the n-PSK coherent optical transmission systems. The results show that the one-tap normalized LMS algorithm performs pretty well in the carrier phase estimation, but will be less effective with the increment of modulation levels, in the compensation of both intrinsic laser phase noise and equalization enhanced phase noise.Comment: 5 pages in [IEEE] International Conference on Information Science and Control Engineering (ICISCE) 2016. arXiv admin note: text overlap with arXiv:1602.0685
    corecore