6,187 research outputs found

    Fault localization based only on failed runs

    Get PDF
    Fault localization commonly relies on both passed and failed runs, but passed runs are generally susceptible to coincidental correctness and modern software automatically produces a huge number of bug reports on failed runs. FOnly is an effective new technique that relies only on failed runs to locate faults statistically. © 2012 IEEE.published_or_final_versio

    Numerical algorithms for dynamic traffic demand estimation between zones in a network

    Get PDF
    This paper presents numerical methods for dynamic traffic demand estimation between N zones in a network, where the zones are disjoint subsets of nodes of the network. Traffic is assumed to be generated or absorbed only in the zones and nowhere else in the network. Traffic volumes between zones over a fixed period of time are modeled as independent random variables with unknown means which it is desired to estimate. For each zone, the volume of all incoming and outgoing traffic is counted on a regular basis but no information about the origin or destination of the observed traffic is used. Procedures are suggested for a regular update of estimates of the N(N - 1) mean traffic demands between the zones on the basis of an incoming stream of the 2N traffic counts. The procedures are based on an exponential smoothing scheme and are reminiscent of the expectation maximization (EM) algorithm if smoothing is removed. Fast and reliable numerical algorithms, based on the conjugate gradient method, are presented for normal as well as for Poisson traffic demands. The Poisson case is linked with entropy maximization. Computational tests based on simulated data demonstrate both the numerical and statistical efficiency of the procedures.preprin

    Fault detection of redundant systems based on B-spline neural network

    Get PDF
    The fault detection and isolation of redundant sensor systems based on B-spline neural networks is presented in this paper. The network is trained using an algorithm with an adaptive learning rate. To further save computation time, the residual vector is transformed from a multivariate B-spline function to an univariate B-spline function. The detection of abrupt and drifting faults using the proposed method is discusses. The performance of the proposed method is illustrated by an example involving a redundant system consisting of six sensors.published_or_final_versio

    Efficient Reconstruction of Piecewise Constant Images Using Nonsmooth Nonconvex Minimization

    Get PDF
    We consider the restoration of piecewise constant images where the number of the regions and their values are not fixed in advance, with a good difference of piecewise constant values between neighboring regions, from noisy data obtained at the output of a linear operator (e.g., a blurring kernel or a Radon transform). Thus we also address the generic problem of unsupervised segmentation in the context of linear inverse problems. The segmentation and the restoration tasks are solved jointly by minimizing an objective function (an energy) composed of a quadratic data-fidelity term and a nonsmooth nonconvex regularization term. The pertinence of such an energy is ensured by the analytical properties of its minimizers. However, its practical interest used to be limited by the difficulty of the computational stage which requires a nonsmooth nonconvex minimization. Indeed, the existing methods are unsatisfactory since they (implicitly or explicitly) involve a smooth approximation of the regularization term and often get stuck in shallow local minima. The goal of this paper is to design a method that efficiently handles the nonsmooth nonconvex minimization. More precisely, we propose a continuation method where one tracks the minimizers along a sequence of approximate nonsmooth energies {Jε}, the first of which being strictly convex and the last one the original energy to minimize. Knowing the importance of the nonsmoothness of the regularization term for the segmentation task, each Jε is nonsmooth and is expressed as the sum of an l1 regularization term and a smooth nonconvex function. Furthermore, the local minimization of each Jε is reformulated as the minimization of a smooth function subject to a set of linear constraints. The latter problem is solved by the modified primal-dual interior point method, which guarantees the descent direction at each step. Experimental results are presented and show the effectiveness and the efficiency of the proposed method. Comparison with simulated annealing methods further shows the advantage of our method.published_or_final_versio

    An empirical comparison between direct and indirect test result checking approaches

    Get PDF
    The SOQUA 2006 Workshop was held in conjunction with the 14th ACM SIGSOFT International Symposium on Foundations of Software Engineering (SIGSOFT 2006/FSE-14) ACM Press, New York, NY.An oracle on software testing is a mechanism for checking whether the system under test has behaved correctly for any executions. In some situations, oracles are unavailable or too expensive to apply. This is known as the oracle problem. It is crucial to develop techniques to address it, and metamorphic testing (MT) was one of such proposals. This paper conducts a controlled experiment to investigate the cost effectiveness of using MT by 38 testers on three open-source programs. The fault detection capability and time cost of MT are compared with the popular assertion checking method. Our results show that MT is cost-efficient and has potentials for detecting more faults than the assertion checking method. Copyright 2006 ACM.preprintThis research is supported in part by a grant of the Research Grants Council of Hong Kong (project no. HKU 7145/04E), a grant of City University of Hong Kong and a grant of The University of Hong Kong

    Workability and mechanical properties of alkali-activated fly ash-slag concrete cured at ambient temperature

    Get PDF
    Alkali-activated fly ash-slag (AAFS) concrete is a new blended alkali-activated concrete that has been increasingly studied over the past decades because of its environmental benefits and superior engineering properties. However, there is still a lack of comprehensive studies on the effect of different factors on the fresh and hardened properties of AAFS concrete. This paper aims to provide a thorough understanding of workability and mechanical properties of AAFS concrete cured at ambient temperature and to obtain the optimal mixtures for engineering application. A series of experiments were carried out to measure workability, setting time, compressive strength, splitting tensile strength, flexural strength and dynamic elastic modulus of AAFS concrete. The results showed that workability and setting time decreased with the increase of slag content and molarity of sodium hydroxide solution (SH). Compressive strength increased with the increase of slag content and molarity of SH as well as the decrease of alkaline activator to binder (AL/B) ratio, but it did not have significant relationship with sodium silicate to sodium hydroxide (SS/SH) ratio. In addition, equations provided by ACI code, Eurocode and previous researchers for ordinary Portland cement concrete overestimated the values of splitting tensile strength, flexural strength and dynamic elastic modulus of AAFS concrete. The optimal mixtures of AAFS concrete were set as slag content of 20–30%, AL/B ratio of 0.4, 10 M of SH, and SS/SH ratio of 1.5–2.5 considering the performance criteria of workability, setting time and compressive strength

    Precise propagation of fault-failure correlations in program flow graphs

    Get PDF
    Statistical fault localization techniques find suspicious faulty program entities in programs by comparing passed and failed executions. Existing studies show that such techniques can be promising in locating program faults. However, coincidental correctness and execution crashes may make program entities indistinguishable in the execution spectra under study, or cause inaccurate counting, thus severely affecting the precision of existing fault localization techniques. In this paper, we propose a BlockRank technique, which calculates, contrasts, and propagates the mean edge profiles between passed and failed executions to alleviate the impact of coincidental correctness. To address the issue of execution crashes, Block-Rank identifies suspicious basic blocks by modeling how each basic block contributes to failures by apportioning their fault relevance to surrounding basic blocks in terms of the rate of successful transition observed from passed and failed executions. BlockRank is empirically shown to be more effective than nine representative techniques on four real-life medium-sized programs. © 2011 IEEE.published_or_final_versionProceedings of the 35th IEEE Annual International Computer Software and Applications Conference (COMPSAC 2011), Munich, Germany, 18-22 July 2011, p. 58-6

    Generating probabilistic Boolean networks from a prescribed stationary distribution

    Get PDF
    Modeling gene regulation is an important problem in genomic research. Boolean networks (BN) and its generalization probabilistic Boolean networks (PBNs) have been proposed to model genetic regulatory interactions. BN is a deterministic model while PBN is a stochastic model. In a PBN, on one hand, its stationary distribution gives important information about the long-run behavior of the network. On the other hand, one may be interested in system synthesis which requires the construction of networks from the observed stationary distribution. This results in an inverse problem which is ill-posed and challenging. Because there may be many networks or no network having the given properties and the size of the inverse problem is huge. In this paper, we consider the problem of constructing PBNs from a given stationary distribution and a set of given Boolean Networks (BNs). We first formulate the inverse problem as a constrained least squares problem. We then propose a heuristic method based on Conjugate Gradient (CG) algorithm, an iterative method, to solve the resulting least squares problem. We also introduce an estimation method for the parameters of the PBNs. Numerical examples are then given to demonstrate the effectiveness of the proposed methods. © 2010 Elsevier Inc. All rights reserved.postprin

    Pyroelectric and piezoelectric properties of lead titanate/polyvinylidene fluoride-trifluoroethylene 0-3 composites

    Get PDF
    Version of RecordPublishe

    Construction and Control of Genetic Regulatory Networks: A Multivariate Markov Chain Approach

    Get PDF
    In the post-genomic era, the construction and control of genetic regulatory networks using gene expression data is a hot research topic. Boolean networks (BNs) and its extension Probabilistic Boolean Networks (PBNs) have been served as an effective tool for this purpose. However, PBNs are difficult to be used in practice when the number of genes is large because of the huge computational cost. In this paper, we propose a simplified multivariate Markov model for approximating a PBN The new model can preserve the strength of PBNs, the ability to capture the inter-dependence of the genes in the network, qnd at the same time reduce the complexity of the network and therefore the computational cost. We then present an optimal control model with hard constraints for the purpose of control/intervention of a genetic regulatory network. Numerical experimental examples based on the yeast data are given to demonstrate the effectiveness of our proposed model and control policy.published_or_final_versio
    corecore