12 research outputs found

    Discrete element numerical simulation of mechanical properties of methane hydrate-bearing specimen considering deposit angles

    Get PDF
    Methane hydrate sediment (MHS) distributes under the seabed in different deposit angles according to the bottom simulating reflector (BSR) exhibitions. The mechanical properties of the combined sediment composed of soil and MHS dominate the stability of the slope. In this work, simulation models that consider the deposit angles, the confining pressures, loading velocities and hydrate saturation (Sh), were generated by using the discrete element method, following which the bi-axial compression of these models is simulated. The deformation response behavior of these models is studied systematically under different loading velocities, deposit angle, and hydrate saturation conditions. With increasing deposit angles, the peak strength approximately increased first and then decreased. The peak stress gradually decreases with increasing deposit angles when the hydrate saturation is more than 70% under the condition that the confining pressure is 10 MPa. The peak strength and stiffness of sediments increased with increasing Sh. The confining pressure enhanced the peak strength linearly, and the elastic modulus increased first and then decreased in a parabolic equation. Under different loading velocities conditions, the peak strength linearly increased, and the elastic modulus logarithmically increased with increasing loading velocity

    Experimental Study on Shear Behavior and Acoustic Emission Characteristics of Nonpersistent Joints

    Get PDF
    The shear behavior of rock discontinuities controls the stability of rock masses to a great extent. In this paper, laboratory shear tests were performed on rock-like materials with different cracks to study the effect of nonpersistent joints on the shear behavior of rock masses. The results show that the variation trends of the shear stress-displacement curves of specimens with different cracks are generally similar and have the same stage characteristics. When the crack length is relatively short, the elastic stage is prolonged, the peak shear strength decreases, and the shear displacement corresponding to the peak shear strength and the residual shear strength increases with the increase of the crack length. When the crack length is relatively long, the elastic stage is shortened, the peak shear strength decreases, and the shear displacement corresponding to the peak shear strength increases with the increase of the crack length. The peak shear stress gradually decreases with the increase of the crack length. The shear strength of the specimens with unilateral cracks is much higher than that of the specimens with bilateral cracks. The shear strength of the specimens is affected not only by the crack length but also by the crack distribution. The acoustic emission (AE) count peak occurs when the shear stress drops sharply and has an inverse "S"-type variation trend with the increase of the crack length. The inclination angle of the fracture decreases, the roughness of the fracture surface decreases, and the proportion of the wear area on the fracture surface increases gradually with the increase of the crack length. The AE source decreases with the increase of the crack length, and their locations are obviously asymmetric. This work can greatly contribute to the insight into the shear failure mechanism of rock discontinuities with nonpersistent joints

    Discrete Element Simulation of the Macro-Meso Mechanical Behaviors of Gas-Hydrate-Bearing Sediments under Dynamic Loading

    Get PDF
    Under the action of dynamic loadings such as earthquakes and volcanic activities, the mechanical properties of gas-hydrate-bearing sediments will deteriorate, leading to a decrease in the stability of hydrate reservoirs and even inducing geological disasters such as submarine landslides. In order to study the effect of dynamic loading on the mechanical properties of hydrate sediments, triaxial compression tests of numerical specimens were carried out by using particle flow code (PFC2D), and the macro-meso mechanical behaviors of specimens were investigated. The results show that the loading frequency has a small effect on the stiffness of the hydrate sediment, while it has a large effect on the peak strength. The peak strength increases and then decreases with the increase in loading frequency. Under the same loading frequency, the peak strength of the hydrate sediment increases with the increase in loading amplitude, and the stiffness of the specimen decreases with the increase in loading amplitude. The maximum shear expansion of the specimen changes with the movement of the phase change point and the rearrangement of the particles. The maximum shear expansion of the specimen changes with the movement of the phase change point and the change of the bearing capacity of the particles after the rearrangement, and the more forward the phase change point is, the stronger the bearing capacity of the specimen in the plastic stage. The shear dilatancy angle and the shear dilatancy amount both increase linearly with the increase in loading amplitude. The influence of loading frequency and amplitude on the contact force chain, displacement, crack expansion, and the number of cementation damage inside the sediment is mainly related to the average axial stress to which the specimen is subjected, and the number of cracks and cementation damage of the sediment specimen increases with the increase in the average axial stress to which the sediment specimen is subjected. As the rate of cementation damage increases, the distribution of shear zones becomes more obvious

    Research on the Mechanism of the Passive Reinforcement of Structural Surface Shear Strength by Bolts under Structural Surface Dislocation

    No full text
    In order to study the local deformation of an anchor bolt and the improvement in the shear strength of a structural surface under the misalignment of an anchorage structure surface, FLAC3D software was used to simulate granite, sandstone, and coal specimens with anchorage angles of 90° to analyze the damage of the anchoring agent and the changes in the local axial and shear forces of the anchor bolts with the misalignment of the structural surface. The results show that the anchor bolt near the structural surface had significant local characteristics with the misalignment of the structural surface; that is, the length of the local deformation area of the bolt was approximately equal to the length of the damaged area of the anchoring agent, and the stress on the anchor bolt was in a coupled tensile–shear stress state when the bolt reached the yield state. For the fully grouted bolts, it was this significant local feature that made the shear strength of the structural surface increase rapidly under a small shear displacement so that the structural surface reached a stable state. The improvement in the shear strength of the anchoring structural surface was caused by the misalignment of the structural surface. This is referred to as the passive improvement of the shear strength of the anchoring structural surface, which is the mechanism of the bonding section anchor to control the shear displacement of the structural surface and realize the stability of the rock mass

    Shear Mechanical Properties of Bolt-Grout Interface under Different Bolt Surface Profiles

    No full text
    The shear behavior of the Bolt-Grout interface has a significant effect on the stability of a bolting system. In this paper, a series of shear tests were conducted on Bolt-Grout interfaces, and the effects of rib spacing, rib angles, and normal stress on the shear characteristics and failure modes of the Bolt-Grout interface were investigated. The results showed that the shear strength varied nonlinearly with an increase in rib spacing and angle, and also that it increased linearly with an increase in normal stress. With smaller rib spacings, the effect of rib spacing on peak shear strength was more apparent. The failure modes of the interface can be categorized as shear-slip failure, shear-break failure, and composite failure. The proportion of shear-slip failure and shear-break failure mainly depends on the rib spacing, rib face angle and normal stress

    Study on Shear Mechanical Properties and Fracture Evolution Mechanism of Irregular Serrated Rock Discontinuities

    No full text
    To analyze the shear characteristics and mesoscopic failure mechanism of irregular serrated rock discontinuities, a great deal of interview samples of irregular serrated structures were made by 3D printing technology, and laboratory shear tests were carried out on them under different normal stresses. At the same time, PFC numerical simulation software is used to establish relevant models to study the evolution of microcracks and the distribution characteristics of the force chain on the rock discontinuity during the shear process. The results show that the shear mechanical properties of irregular serrated rock discontinuities are affected by normal stress, undulating angle, and undulating height. The shear strength increases with the increase of normal stress and undulating height, and decreases with the increase of undulating angle. The numerical simulation results show that the irregular structural surface cracks under different undulation angles, which first start at the near force end serration root on both sides and further evolve to the adjacent serrations, while the irregular structural surface cracks under different undulation heights, which first start at the serration root with the lowest height and expand to the adjacent serrations. At the same time, the number of cracks increases with the increase of normal stress and the force chain is mainly distributed near the sawtooth surface. The force chain is more concentrated near the near force end sawtooth and at the tip and root of the rest of the sawtooth. At the same time, the direction of the force chain is approximately perpendicular to the force surface of the sawtooth. The research results are helpful in further understanding the shear mechanical properties and differences of irregular serrated rock discontinuities

    Discrete Element Simulation of the Macro-Meso Mechanical Behaviors of Gas-Hydrate-Bearing Sediments under Dynamic Loading

    No full text
    Under the action of dynamic loadings such as earthquakes and volcanic activities, the mechanical properties of gas-hydrate-bearing sediments will deteriorate, leading to a decrease in the stability of hydrate reservoirs and even inducing geological disasters such as submarine landslides. In order to study the effect of dynamic loading on the mechanical properties of hydrate sediments, triaxial compression tests of numerical specimens were carried out by using particle flow code (PFC2D), and the macro-meso mechanical behaviors of specimens were investigated. The results show that the loading frequency has a small effect on the stiffness of the hydrate sediment, while it has a large effect on the peak strength. The peak strength increases and then decreases with the increase in loading frequency. Under the same loading frequency, the peak strength of the hydrate sediment increases with the increase in loading amplitude, and the stiffness of the specimen decreases with the increase in loading amplitude. The maximum shear expansion of the specimen changes with the movement of the phase change point and the rearrangement of the particles. The maximum shear expansion of the specimen changes with the movement of the phase change point and the change of the bearing capacity of the particles after the rearrangement, and the more forward the phase change point is, the stronger the bearing capacity of the specimen in the plastic stage. The shear dilatancy angle and the shear dilatancy amount both increase linearly with the increase in loading amplitude. The influence of loading frequency and amplitude on the contact force chain, displacement, crack expansion, and the number of cementation damage inside the sediment is mainly related to the average axial stress to which the specimen is subjected, and the number of cracks and cementation damage of the sediment specimen increases with the increase in the average axial stress to which the sediment specimen is subjected. As the rate of cementation damage increases, the distribution of shear zones becomes more obvious

    Influence of Normal Stiffness and Shear Rate on the Shear Behaviors and Acoustic Emissions Characteristics of Artificial Rock Joints

    No full text
    Understanding the asperity damage behaviors of joints during shearing is critical for evaluating the stability of deep underground engineering structures. In this paper, we prepared plaster joints and used them for direct shear tests under different normal stiffness (0–7 MPa/mm) and various shear rate (0.5–20 mm/min) conditions. The effects of normal stiffness and shear rate on mechanical behavior and AE characteristics were studied. With the increase of normal stiffness, the damaged area of the surface of the joint and the weight of the damaged, rough body basically show a linear increase. With the increase of the shear rate, the peak shear stress and the final shear stress of the joint are non-linearly decreased (the decrease rate at the shear rate of 0.5–5 mm/min is much larger than that at the shear rate of 5–20 mm/min), more local cracks appear on the surface of the joint, and the dilatancy of the joint slightly decreases. More than 60% of the acoustic emission signals in the shearing process of the joint are concentrated in the post-peak phase. With the increase of normal stiffness, the cumulative number of acoustic emission impacts and cumulative energy both increase. With the increase in shear rate, the accumulated acoustic emission impact number decreases, and the accumulated AE energy tends to increase when the shear rate is 0.5–5 mm/min and decreases when the shear rate increases to 5–20 mm/min

    Discrete Element Simulation on Macro-Meso Mechanical Characteristics of Natural Gas Hydrate-Bearing Sediments under Shearing

    No full text
    In order to study the macro-meso shear mechanical characteristics of natural gas hydrate-bearing sediments, the direct shear simulations of natural gas hydrate-bearing sediment specimens with different saturations under different normal stress boundary conditions were carried out using the discrete element simulation program of particle flow, and the macro-meso shear mechanical characteristics of the specimens and their evolution laws were obtained, and their shear damage mechanisms were revealed. The results show that the peak intensity of natural gas hydrate-bearing sediments increases with the increase in normal stress and hydrate saturation. Hydrate particles and sand particles jointly participate in the formation and evolution of the force chain, and sand particles account for the majority of the force chain particles and take the main shear resistance role. The number of cracks produced by shear increases with hydrate saturation and normal stress. The average porosity in the shear zone shows an evolutionary pattern of decreasing and then increasing during the shear process
    corecore