10,235 research outputs found

    Method of Studying Λb0\Lambda_b^0 decays with one missing particle

    Get PDF
    A new technique is discussed that can be applied to Λb0\Lambda_b^0 baryon decays where decays with one missing particle can be discerned from background and their branching fractions determined, along with other properties of the decays. Applications include measurements of the CKM elements ∣Vub∣|V_{ub}| and ∣Vcb∣|V_{cb}|, selected charmless decays, and detection of any exotic objects coupling to b→sb\to s decays, such as the inflaton.Comment: 6 pages, 2 figures, updated for referees comments on July 16, 201

    Characterization and cytotoxicity studies of thiol-modified polystyrene microbeads doped with [(Mo6X8)(NO3)6]2- (X=Cl, Br, I)

    Get PDF
    Halide octahedral molybdenum clusters [(Mo6X8)L6]n- possess luminescence properties that are highly promising for biological applications. These properties are rather dependent on the nature of both the inner ligands X (i.e. Cl, Br, or I) and the apical organic or inorganic ligands L. Herein, the luminescence properties and the toxicity of thiol-modified polystyrene microbeads (PS-SH) doped with [(Mo6X8)(NO3)6]2- (X=Cl, Br, I) were studied and evaluated using human epidermoid larynx carcinoma (Hep2) cell cultures. According to our data, the photoluminescence quantum yield of (Mo6I8)@PS-SH is significantly higher (0.04) than that of (Mo6Cl8)@PS-SH (6Br8)@PS-SH (6X8)@PS-SH showed that all three types of doped microbeads had no significant effect on the viability and proliferation of the cells

    Challenging the geographic bias in recognising large-scale patterns of diversity change

    Get PDF
    Aim: Geographic structure is a fundamental organising principle in ecological and Earth sciences, and our planet is conceptually divided into distinct geographic clusters (e.g. ecoregions and biomes) demarcating unique diversity patterns. Given recent advances in technology and data availability, however, we ask whether geographically clustering diversity time-series should be the default framework to identify meaningful patterns of diversity change. Location: North America. Taxon: Aves. Methods: We first propose a framework that recognises patterns of diversity change based on similarities in the behaviour of diversity time-series, independent of their specific or relative spatial locations. Specifically, we applied an artificial neural network approach, the self-organising map (SOM), to group time-series of over 0.9 million observations from the North American Breeding Birds Survey (BBS) data from 1973 to 2016. We then test whether time-series identified as having similar behaviour are geographically structured. Results: We find little evidence of strong geographic structure in patterns of diversity change for North American breeding birds. The majority of the recognised diversity time-series patterns tend to be indistinguishable from being independently distributed in space. Main Conclusions: Our results suggest that geographic proximity may not correspond to shared temporal trends in diversity; assuming that geographic clustering is the basis for analysis may bias diversity trend estimation. We suggest that approaches that consider variability independently of geographic structure can serve as a useful addition to existing organising rules of biodiversity time-series

    M-Track: A New Software for Automated Detection of Grooming Trajectories in Mice

    Get PDF
    Grooming is a complex and robust innate behavior, commonly performed by most vertebrate species. In mice, grooming consists of a series of stereotyped patterned strokes, performed along the rostro-caudal axis of the body. The frequency and duration of each grooming episode is sensitive to changes in stress levels, social interactions and pharmacological manipulations, and is therefore used in behavioral studies to gain insights into the function of brain regions that control movement execution and anxiety. Traditional approaches to analyze grooming rely on manually scoring the time of onset and duration of each grooming episode, and are often performed on grooming episodes triggered by stress exposure, which may not be entirely representative of spontaneous grooming in freely-behaving mice. This type of analysis is time-consuming and provides limited information about finer aspects of grooming behaviors, which are important to understand movement stereotypy and bilateral coordination in mice. Currently available commercial and freeware video-tracking software allow automated tracking of the whole body of a mouse or of its head and tail, not of individual forepaws. Here we describe a simple experimental set-up and a novel open-source code, named M-Track, for simultaneously tracking the movement of individual forepaws during spontaneous grooming in multiple freely-behaving mice. This toolbox provides a simple platform to perform trajectory analysis of forepaw movement during distinct grooming episodes. By using M-track we show that, in C57BL/6 wild type mice, the speed and bilateral coordination of the left and right forepaws remain unaltered during the execution of distinct grooming episodes. Stress exposure induces a profound increase in the length of the forepaw grooming trajectories. M-Track provides a valuable and user-friendly interface to streamline the analysis of spontaneous grooming in biomedical research studies

    SLOB, a SLOWPOKE Channel Binding Protein, Regulates Insulin Pathway Signaling and Metabolism in Drosophila

    Get PDF
    There is ample evidence that ion channel modulation by accessory proteins within a macromolecular complex can regulate channel activity and thereby impact neuronal excitability. However, the downstream consequences of ion channel modulation remain largely undetermined. The Drosophila melanogaster large conductance calcium-activated potassium channel SLOWPOKE (SLO) undergoes modulation via its binding partner SLO-binding protein (SLOB). Regulation of SLO by SLOB influences the voltage dependence of SLO activation and modulates synaptic transmission. SLO and SLOB are expressed especially prominently in median neurosecretory cells (mNSCs) in the pars intercerebralis (PI) region of the brain; these cells also express and secrete Drosophila insulin like peptides (dILPs). Previously, we found that flies lacking SLOB exhibit increased resistance to starvation, and we reasoned that SLOB may regulate aspects of insulin signaling and metabolism. Here we investigate the role of SLOB in metabolism and find that slob null flies exhibit changes in energy storage and insulin pathway signaling. In addition, slob null flies have decreased levels of dilp3 and increased levels of takeout, a gene known to be involved in feeding and metabolism. Targeted expression of SLOB to mNSCs rescues these alterations in gene expression, as well as the metabolic phenotypes. Analysis of fly lines mutant for both slob and slo indicate that the effect of SLOB on metabolism and gene expression is via SLO. We propose that modulation of SLO by SLOB regulates neurotransmission in mNSCs, influencing downstream insulin pathway signaling and metabolism
    • …
    corecore