33,347 research outputs found
A new analytics model for large scale multidimensional data visualization
© Springer International Publishing Switzerland 2015. With The Rise Of Big Data, The Challenge For Modern Multidimen-Sional Data Analysis And Visualization Is How It Grows Very Quickly In Size And Complexity. In This Paper, We First Present A Classification Method Called The 5ws Dimensions Which Classifies Multidimensional Data Into The 5ws Definitions. The 5ws Dimensions Can Be Applied To Multiple Datasets Such As Text Datasets, Audio Datasets And Video Datasets. Second, We Establish A Pair-Density Model To Analyze The Data Patterns To Compare The Multidimensional Data On The 5ws Patterns. Third, We Created Two Additional Parallel Axes By Using Pair-Density For Visualization. The Attributes Has Been Shrunk To Reduce Data Over-Crowding In Pair-Density Parallel Coordinates. This Has Achieved More Than 80% Clutter Reduction Without The Loss Of Information. The Experiment Shows That Our Model Can Be Efficiently Used For Big Data Analysis And Visualization
Visual clustering of spam emails for DDoS analysis
Networking attacks embedded in spam emails are increasingly becoming numerous and sophisticated in nature. Hence this has given a growing need for spam email analysis to identify these attacks. The use of these intrusion detection systems has given rise to other two issues, 1) the presentation and understanding of large amounts of spam emails, 2) the user-assisted input and quantified adjustment during the analysis process. In this paper we introduce a new analytical model that uses two coefficient vectors: 'density' and 'weight'for the analysis of spam email viruses and attacks. We then use a visual clustering method to classify and display the spam emails. The visualization allows users to interactively select and scale down the scope of views for better understanding of different types of the spam email attacks. The experiment shows that this new model with the clustering visualization can be effectively used for network security analysis. © 2011 IEEE
Extending Hybrid CSP with Probability and Stochasticity
Probabilistic and stochastic behavior are omnipresent in computer controlled
systems, in particular, so-called safety-critical hybrid systems, because of
fundamental properties of nature, uncertain environments, or simplifications to
overcome complexity. Tightly intertwining discrete, continuous and stochastic
dynamics complicates modelling, analysis and verification of stochastic hybrid
systems (SHSs). In the literature, this issue has been extensively
investigated, but unfortunately it still remains challenging as no promising
general solutions are available yet. In this paper, we give our effort by
proposing a general compositional approach for modelling and verification of
SHSs. First, we extend Hybrid CSP (HCSP), a very expressive and process
algebra-like formal modeling language for hybrid systems, by introducing
probability and stochasticity to model SHSs, which is called stochastic HCSP
(SHCSP). To this end, ordinary differential equations (ODEs) are generalized by
stochastic differential equations (SDEs) and non-deterministic choice is
replaced by probabilistic choice. Then, we extend Hybrid Hoare Logic (HHL) to
specify and reason about SHCSP processes. We demonstrate our approach by an
example from real-world.Comment: The conference version of this paper is accepted by SETTA 201
An improved wavelet analysis method for detecting DDoS attacks
Wavelet Analysis method is considered as one of the most efficient methods for detecting DDoS attacks. However, during the peak data communication hours with a large amount of data transactions, this method is required to collect too many samples that will greatly increase the computational complexity. Therefore, the real-time response time as well as the accuracy of attack detection becomes very low. To address the above problem, we propose a new DDoS detection method called Modified Wavelet Analysis method which is based on the existing Isomap algorithm and wavelet analysis. In the paper, we present our new model and algorithm for detecting DDoS attacks and demonstrate the reasons of why we enlarge the Hurst's value of the self-similarity in our new approach. Finally we present an experimental evaluation to demonstrate that the proposed method is more efficient than the other traditional methods based on wavelet analysis. © 2010 IEEE
RELT - Visualizing trees on mobile devices
The small screens on increasingly used mobile devices challenge the traditional visualization methods designed for desktops. This paper presents a method called "Radial Edgeless Tree" (RELT) for visualizing trees in a 2-dimensional space. It combines the existing connection tree drawing with the space-filling approach to achieve the efficient display of trees in a small geometrical area, such as the screen that are commonly used in mobile devices. We recursively calculate a set of non-overlapped polygonal nodes that are adjacent in the hierarchical manner. Thus, the display space is fully used for displaying nodes, while the hierarchical relationships among the nodes are presented by the adjacency (or boundary-sharing) of the nodes. It is different from the other traditional connection approaches that use a node-link diagram to present the parent-child relationships which waste the display space. The hierarchy spreads from north-west to south-east in a top-down manner which naturally follows the traditional way of human perception of hierarchies. We discuss the characteristics, advantages and limitations of this new technique and suggestions for future research. © Springer-Verlag Berlin Heidelberg 2007
Two axes re-ordering methods in parallel coordinates plots
© 2015 Elsevier Ltd. Visualization and interaction of multidimensional data are challenges in visual data analytics, which requires optimized solutions to integrate the display, exploration and analytical reasoning of data into one visual pipeline for human-centered data analysis and interpretation. Even though it is considered to be one of the most popular techniques for visualization and analysis of multidimensional data, parallel coordinate visualization is also suffered from the visual clutter problem as well as the computational complexity problem, same as other visualization methods in which visual clutter occurs where the volume of data needs to be visualized to be increasing. One straightforward way to address these problems is to change the ordering of axis to reach the minimal number of visual clutters. However, the optimization of the ordering of axes is actually a NP-complete problem. In this paper, two axes re-ordering methods are proposed in parallel coordinates visualization: (1) a contribution-based method and (2) a similarity-based method.The contribution-based re-ordering method is mainly based on the singular value decomposition (SVD) algorithm. It can not only provide users with the mathmetical theory for the selection of the first remarkable axis, but also help with visualizing detailed structure of the data according to the contribution of each data dimension. This approach reduces the computational complexity greatly in comparison with other re-ordering methods. A similarity-based re-ordering method is based on the combination of nonlinear correlation coefficient (NCC) and SVD algorithms. By using this approach, axes are re-ordered in line with the degree of similarities among them. It is much more rational, exact and systemic than other re-ordering methods, including those based on Pearson's correlation coefficient (PCC). Meanwhile, the paper also proposes a measurement of contribution rate of each dimension to reveal the property hidden in the dataset. At last, the rationale and effectiveness of these approaches are demonstrated through case studies. For example, the patterns of Smurf and Neptune attacks hidden in KDD 1999 dataset are visualized in parallel coordinates using contribution-based re-ordering method; NCC re-ordering method can enlarge the mean crossing angles and reduce the amount of polylines between the neighboring axes
An integrated visual framework for the human-Web interface
© 2002 IEEE. The design of Web sites has been largely ad hoc, with little concern about the effectiveness of navigation and maintenance. This paper presents a general framework with a human-Web interface that supports Web design through visual programming and reverse Web engineering through visualization. The paper describes the framework in the context of a Web tool, known as HWIT which has been developed for a pilot study
Dual Identities inside the Gluon and the Graviton Scattering Amplitudes
Recently, Bern, Carrasco and Johansson conjectured dual identities inside the
gluon tree scattering amplitudes. In this paper, we use the properties of the
heterotic string and open string tree scattering amplitudes to refine and
derive these dual identities. These identities can be carried over to loop
amplitudes using the unitarity method. Furthermore, given the -gluon (as
well as gluon-gluino) tree amplitudes, -graviton (as well as
graviton-gravitino) tree scattering amplitudes can be written down immediately,
avoiding the derivation of Feynman rules and the evaluation of Feynman diagrams
for graviton scattering amplitudes.Comment: 43 pages, 3 figures; typos corrected, a few points clarified
Recommended from our members
De-pollution efficacy of photocatalytic roofing granules
Photocatalytic building surfaces can harness sunlight to reduce urban air pollution. The NOx abatement capacity of TiO2-coated granules used in roofing products was evaluated for commercial product development. A laboratory test chamber and ancillary setup were built following conditions prescribed by ISO Standard 22197-1. It was validated by exposing reference P25-coated aluminum plates to a 3 L min−1 air flow enriched in 1 ppm NO under UVA irradiation (360 nm, 11.5 W m−2). We characterized prototype granule-surfaced asphalt shingles and loose granules prepared with different TiO2 loadings and post-treatment formulations. Tests performed at surface temperatures of 25 and 60 °C showed that NOx abatement was more effective at the higher temperature. Preliminary tests explored the use of 1 ppm NO2 and of 1 ppm and 0.3 ppm NO/NO2 mixtures. Specimens were aged in a laboratory accelerated weathering apparatus, and by exposure to the outdoor environment over periods that included dry and rainy seasons. Laboratory aging led to higher NO removal and NO2 formation rates, and the same catalyst activation was observed after field exposure with frequent precipitation. However, exposure during the dry season reduced the performance. This inactivation was mitigated by cleaning the surface of field-exposed specimens. Doubling the TiO2 loading led to a 50–150% increase in NO removal and NOx deposition rates. Application of different post-treatment coatings decreased NO removal rates (21–35%) and NOx deposition rates (26–74%) with respect to untreated granules. The mass balance of nitrogenated species was assessed by extracting granules after UV exposure in a 1 ppm NO-enriched atmosphere
Characterization of damage in shielding structures of space vehicles under hypervelocity impact
6th Asia Pacific Workshop on Structural Health Monitoring, APWSHM, Hobart, Tasmania, Australia, 7-9 December 2016Version of RecordPublishe
- …
