5,435 research outputs found

    Distorted magnetic orders and electronic structures of tetragonal FeSe from first-principles

    Full text link
    We use the state-of-the-arts density-functional-theory method to study various magnetic orders and their effects on the electronic structures of the FeSe. Our calculated results show that, for the spins of the single Fe layer, the striped antiferromagnetic orders with distortion are more favorable in total energy than the checkerboard antiferromagnetic orders with tetragonal symmetry, which is consistent with known experimental data, and the inter-layer magnetic interaction is very weak. We investigate the electronic structures and magnetic property of the distorted phases. We also present our calculated spin coupling constants and discuss the reduction of the Fe magnetic moment by quantum many-body effects. These results are useful to understand the structural, magnetic, and electronic properties of FeSe, and may have some helpful implications to other FeAs-based materials

    Pressure Effect on the superconducting properties of LaO_{1-x}F_{x}FeAs(x=0.11) superconductor

    Full text link
    Diamagnetic susceptibility measurements under high hydrostatic pressure (up to 1.03 GPa) were carried out on the newly discovered Fe-based superconductor LaO_{1-x}F_{x}FeAs(x=0.11). The transition temperature T_c, defined as the point at the maximum slope of superconducting transition, was enhanced almost linearly by hydrostatic pressure, yielding a dT_c/dP of about 1.2 K/GPa. Differential diamagnetic susceptibility curves indicate that the underlying superconducting state is complicated. It is suggested that pressure plays an important role on pushing low T_c superconducting phase toward the main (optimal) superconducting phase.Comment: 7 pages, 4 figure

    Limits on Light Weakly Interacting Massive Particles from the First 102.8 kg ×{\times} day Data of the CDEX-10 Experiment

    Full text link
    We report the first results of a light weakly interacting massive particles (WIMPs) search from the CDEX-10 experiment with a 10 kg germanium detector array immersed in liquid nitrogen at the China Jinping Underground Laboratory with a physics data size of 102.8 kg day. At an analysis threshold of 160 eVee, improved limits of 8 ×10−42\times 10^{-42} and 3 ×10−36\times 10^{-36} cm2^{2} at a 90\% confidence level on spin-independent and spin-dependent WIMP-nucleon cross sections, respectively, at a WIMP mass (mχm_{\chi}) of 5 GeV/c2{c}^2 are achieved. The lower reach of mχm_{\chi} is extended to 2 GeV/c2{c}^2.Comment: 5 pages, 4 figure

    Enhancement in superconducting transition temperature and upper critical field of LaO0.8F0.2FeAs with antimony doping

    Full text link
    We report the synthesis and characterization of antimony doped oxypnictide superconductor, LaO0.8F0.2FeAs1-xSbx (x = 0.05 and 0.10). The parent compound LaOFeAs with fluorine doping exhibits superconductivity at maximum transition temperature ~ 28.5 K [11]. Here we partially substitute As by Sb (LaO0.8F0.2FeAs1-xSbx) and observe enhancement of the transition temperature to 30.1 K. This is the only instance so far where Tc increases with doping in the conducting layer (FeAs) and this leads to the highest transition temperature in any La-based oxypnictide. XRD and EDAX measurements confirm phase purity of the samples and the presence of Sb. The magneto-resistance measurements show that the value of upper critical field Hc2(0) to be about 73 T corresponding to a coherence length of 22 angstrom. The Seebeck coefficient measurements indicate electron transport with strong contribution from electron-electron correlation. These results provide interesting insight to the origin of superconductivity in these novel series of compounds

    Search for Light Weakly-Interacting-Massive-Particle Dark Matter by Annual Modulation Analysis with a Point-Contact Germanium Detector at the China Jinping Underground Laboratory

    Full text link
    We present results on light weakly interacting massive particle (WIMP) searches with annual modulation (AM) analysis on data from a 1-kg mass pp-type point-contact germanium detector of the CDEX-1B experiment at the China Jinping Underground Laboratory. Datasets with a total live time of 3.2 yr within a 4.2 yr span are analyzed with analysis threshold of 250 eVee. Limits on WIMP-nucleus (χ{\chi}-NN) spin-independent cross sections as function of WIMP mass (mχm_{\chi}) at 90\% confidence level (C.L.) are derived using the dark matter halo model. Within the context of the standard halo model, the 90\% C.L. allowed regions implied by the DAMA/LIBRA and CoGeNT AM-based analysis are excluded at >>99.99\% and 98\% C.L., respectively. These results correspond to the best sensitivity at mχm_{\chi}<<6 GeV/c2~{\rm GeV}/c^2 among WIMP AM measurements to date.Comment: 5 pages, 4 figure

    Nernst effect of the new iron-based superconductor LaO1−x_{1-x}Fx_{x}FeAs

    Full text link
    We report the first Nernst effect measurement on the new iron-based superconductor LaO1−x_{1-x}Fx_{x}FeAs (x=0.1)(x=0.1). In the normal state, the Nernst signal is negative and very small. Below TcT_{c} a large positive peak caused by vortex motion is observed. The flux flowing regime is quite large compared to conventional type-II superconductors. However, a clear deviation of the Nernst signal from normal state background and an anomalous depression of off-diagonal thermoelectric current in the normal state between TcT_{c} and 50 K are observed. We propose that this anomaly in the normal state Nernst effect could correlate with the SDW fluctuations.Comment: 8 pages, 4 figures; Latex file changed, references adde

    Constraints on Spin-Independent Nucleus Scattering with sub-GeV Weakly Interacting Massive Particle Dark Matter from the CDEX-1B Experiment at the China Jin-Ping Laboratory

    Full text link
    We report results on the searches of weakly interacting massive particles (WIMPs) with sub-GeV masses (mχm_{\chi}) via WIMP-nucleus spin-independent scattering with Migdal effect incorporated. Analysis on time-integrated (TI) and annual modulation (AM) effects on CDEX-1B data are performed, with 737.1 kg⋅\cdotday exposure and 160 eVee threshold for TI analysis, and 1107.5 kg⋅\cdotday exposure and 250 eVee threshold for AM analysis. The sensitive windows in mχm_{\chi} are expanded by an order of magnitude to lower DM masses with Migdal effect incorporated. New limits on σχNSI\sigma_{\chi N}^{\rm SI} at 90\% confidence level are derived as 2×2\times10−32∼7×^{-32}\sim7\times10−35^{-35} cm2\rm cm^2 for TI analysis at mχ∼m_{\chi}\sim 50−-180 MeV/c2c^2, and 3×3\times10−32∼9×^{-32}\sim9\times10−38^{-38} cm2\rm cm^2 for AM analysis at mχ∼m_{\chi}\sim75 MeV/c2−c^2-3.0 GeV/c2c^2.Comment: 5 pages, 4 figure

    Spin-singlet superconductivity with multiple gaps in PrO0.89F0.11FeAs

    Full text link
    Since the discovery of high transition-temperature (Tc) superconductivity in copper oxides two decades ago, continuous efforts have been devoted to searching for similar phenomenon in other compounds. With the exception of MgB2 (Tc =39 K), however, Tc is generally far lower than desired. Recently, breakthrough has been made in a new class of oxypnictide compounds. Following the initial discovery of superconductivity in LaO1-x FxFeAs (Tc =26 K), Tc onset has been raised to 55 K in ReO1-xFxFeAs (Re: Ce, Pr, Nd, Sm). Meanwhile, unravelling the nature of the energy associated with the formation of current-carrying pairs (Cooper pairs), referred to as the superconducting energy gap, is the first and vital step towards understanding why the superconductivity occurs at such high temperature and is also important for finding superconductors with still higher Tc. Here we show that, on the basis of the nuclear magnetic resonance (NMR) measurements in PrO0.89F0.11FeAs (Tc =45 K), the Cooper pair is in the spin-singlet state (two spins are anti-paralleled), with two energy gaps opening below Tc. The results strongly suggest the existence of nodes (zeros) in the gap. None of superconductors known to date has such unique gap features, although copper-oxides and MgB2 share part of them.Comment: submitted on May 1
    • …
    corecore