173,533 research outputs found

    Photovoltage Detection of Edge Magnetoplasmon Oscillations and Giant Magnetoplasmon Resonances in A Two-Dimensional Hole System

    Full text link
    In our high mobility p-type AlGaAs/GaAs two-dimensional hole samples, we originally observe the B-periodic oscillation induced by microwave (MW) in photovoltage (PV) measurements. In the frequency range of our measurements (5 - 40 GHz), the period ({\Delta}B) is inversely proportional to the microwave frequency (f). The distinct oscillations come from the edge magnetoplasmon (EMP) in the high quality heavy hole system. In our hole sample with a very large effective mass, the observation of the EMP oscillations is in neither the low frequency limit nor the high frequency limit, and the damping of the EMP oscillations is very weak under high magnetic fields. Simultaneously, we observe the giant plasmon resonance signals in our measurements on the shallow two-dimensional hole system (2DHS)

    Visualizing urban microclimate and quantifying its impact on building energy use in San Francisco

    Get PDF
    Weather data at nearby airports are usually used in building energy simulation to estimate energy use in buildings or evaluate building design or retrofit options. However, due to urbanization and geography characteristics, local weather conditions can differ significantly from those at airports. This study presents the visualization of 10-year hourly weather data measured at 27 sites in San Francisco, aiming to provide insights into the urban microclimate and urban heat island effect in San Francisco and how they evolve during the recent decade. The 10-year weather data are used in building energy simulations to investigate its influence on energy use and electrical peak demand, which informs the city's policy making on building energy efficiency and resilience. The visualization feature is implemented in CityBES, an open web-based data and computing platform for urban building energy research
    • …
    corecore