147,841 research outputs found

    Solar surface rotation: N-S asymmetry and recent speed-up

    Full text link
    Context. The relation between solar surface rotation and sunspot activity still remains open. Sunspot activity has dramatically reduced in solar cycle 24 and several solar activity indices and flux measurements experienced unprecedentedly low levels during the last solar minimum. Aims. We aim to reveal the momentary variation of solar surface rotation, especially during the recent years of reducing solar activity. Methods. We used a dynamic, differentially rotating reference system to determine the best-fit annual values of the differential rotation parameters of active longitudes of solar X-ray flares and sunspots in 1977-2012. Results. The evolution of rotation of solar active longitudes obtained with X-ray flares and with sunspots is very similar. Both hemispheres speed up since the late 1990s, with the southern hemisphere rotating slightly faster than the north. Earlier, in 1980s, rotation in the northern hemisphere was considerably faster, but experienced a major decrease in the early 1990s. On the other hand, little change was found in the southern rotation during these decades. This led to a positive asymmetry in north-south rotation rate in the early part of the time interval studied. Conclusions. The rotation of both hemispheres has been speeding up at roughly the same rate since late 1990s, with the southern hemisphere rotating slightly faster than the north. This period coincides with the start of dramatic weakening of solar activity, as observed in sunspots and several other solar, interplanetary and geomagnetic parameters.Comment: Astron. Astrophys. Lett. (accepted

    Detecting Cohomology for Lie Superalgebras

    Get PDF
    In this paper we use invariant theory to develop the notion of cohomological detection for Type I classical Lie superalgebras. In particular we show that the cohomology with coefficients in an arbitrary module can be detected on smaller subalgebras. These results are used later to affirmatively answer questions, which were originally posed in \cite{BKN1} and \cite{BaKN}, about realizing support varieties for Lie superalgebras via rank varieties constructed for the smaller detecting subalgebras

    Off-Beam Gamma-Ray Pulsars and Unidentified EGRET Sources in the Gould Belt

    Get PDF
    We investigate whether gamma-ray pulsars viewed at a large angle to the neutron star magnetic pole could contribute to the new population of galactic unidentified EGRET sources associated with the Gould Belt. The faint, soft nature of these sources is distinctly different from both the properties of unidentified EGRET sources along the galactic plane and of the known gamma-ray pulsars. We explore the possibility, within the polar cap model, that some of these sources are emission from pulsars seen at lines of sight that miss both the bright gamma-ray cone beams and the radio beam. The off-beam gamma-rays come from high-altitude curvature emission of primary particles, are radiated over a large solid angle and have a much softer spectrum than that of the main beams. We estimate that the detectability of such off-beam emission is about a factor of 4-5 higher than that of the on-beam emission. At least some of the radio-quiet Gould Belt sources detected by EGRET could therefore be such off-beam gamma-ray pulsars. GLAST should be able to detect pulsations in most of these sources.Comment: 5 pages, uses emulateapj.sty, accepted for publication in ApJ Letter

    Oxygen-stripes in La0.5Ca0.5MnO3 from ab initio calculations

    Full text link
    We investigate the electronic, magnetic and orbital properties of La0.5Ca0.5MnO3 perovskite by means of an ab initio electronic structure calculation within the Hartree-Fock approximation. Using the experimental crystal structure reported by Radaelli et al. [Phys. Rev B 55, 3015 (1997)], we find a charge-ordering stripe-like ground state. The periodicity of the stripes, and the insulating CE-type magnetic structure are in agreement with neutron x-ray and electron diffraction experiments. However, the detailed structure is more complex than that envisaged by simple models of charge and orbital order on Mn d-levels alone, and is better described as a charge-density wave of oxygen holes, coupled to the Mn spin/orbital order.Comment: 4 pages, 3 figures. Version accepted for publication in PR

    Roles of axial anomaly on neutral quark matter with color superconducting phase

    Full text link
    We investigate effects of the axial anomaly term with a chiral-diquark coupling on the phase diagram within a two-plus-one-flavor Nambu-Jona-Lasinio (NJL) model under the charge-neutrality and β\beta-equilibrium constraints. We find that when such constraints are imposed, the new anomaly term plays a quite similar role as the vector interaction does on the phase diagram, which the present authors clarified in a previous work. Thus, there appear several types of phase structures with multiple critical points at low temperature TT, although the phase diagrams with intermediate-TT critical point(s) are never realized without these constraints even within the same model Lagrangian. This drastic change is attributed to an enhanced interplay between the chiral and diquark condensates due to the anomaly term at finite temperature; the u-d diquark coupling is strengthened by the relatively large chiral condensate of the strange quark through the anomaly term, which in turn definitely leads to the abnormal behavior of the diquark condensate at finite TT, inherent to the asymmetric quark matter. We note that the critical point from which the crossover region extends to zero temperature appears only when the strength of the vector interaction is larger than a critical value. We also show that the chromomagnetic instability of the neutral asymmetric homogenous two-flavor color superconducting(2CSC) phase is suppressed and can be even completely cured by the enhanced diquark coupling due to the anomaly term and/or by the vector interaction.Comment: 15 pages, 5 figures, typos corrected, new references and some statements adde

    On the Impact of Multiobjective Scalarizing Functions

    Get PDF
    Recently, there has been a renewed interest in decomposition-based approaches for evolutionary multiobjective optimization. However, the impact of the choice of the underlying scalarizing function(s) is still far from being well understood. In this paper, we investigate the behavior of different scalarizing functions and their parameters. We thereby abstract firstly from any specific algorithm and only consider the difficulty of the single scalarized problems in terms of the search ability of a (1+lambda)-EA on biobjective NK-landscapes. Secondly, combining the outcomes of independent single-objective runs allows for more general statements on set-based performance measures. Finally, we investigate the correlation between the opening angle of the scalarizing function's underlying contour lines and the position of the final solution in the objective space. Our analysis is of fundamental nature and sheds more light on the key characteristics of multiobjective scalarizing functions.Comment: appears in Parallel Problem Solving from Nature - PPSN XIII, Ljubljana : Slovenia (2014
    corecore