130 research outputs found

    自己および相互オクルージョンを考慮したマルチタスク深層学習による人物スケルトン推定

    Get PDF
    学位の種別: 修士University of Tokyo(東京大学

    Energetic stability, structural transition, and thermodynamic properties of ZnSnO[sub 3]

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98679/1/ApplPhysLett_98_091914.pd

    ANTICANCER CONSTITUENTS AND CYTOTOXIC ACTIVITY OF METHANOL-WATER EXTRACT OF POLYGONUM BISTORTA L.

    Get PDF
    This study was specifically designed to identify anticancer constituents in methanol-water extract of Polygonum bistorta L. and evaluate its cytotoxicity. For this purpose methanol-water (40:60 v/v) extract was subjected to conventional preparative high pressure liquid chromatography and 13 fractions were obtained. Constituents of obtained fractions were separated and identified with the help of GC-MS and LC-DAD-ESI-MS. Anticancer phenolic compounds such as gallic acid, protocatechuic acid, p-hydroxybenzoic acid, chlorogenic acid, vanillic acid, syringic acid, catechol, 4-methyl catechol, syringol and pyrogallol and fatty acids such as linoleic acid, myristic acid and palmitic acid were separated from different fractions. Fractions were evaluated for their cytotoxic activity on a rarely studied human hepatocellular carcinoma cell line (HCCLM3). 11 fractions showed good to strong cytotoxicity in a range of 200 µg/mL-800 µg/mL, whereas 2 fractions did not show any activity even at 800 µg/mL and no anticancer constituent was detected from them. 50 percent growth inhibition (GI50) values for five most active fractions were calculated and results were in a range of 86.5 (±3) µg/mL-126.8 (±3) µg/mL. 3 out of these 5 most active fractions were found to contain phenolic content in them whereas all other fractions containing phenolic content did possess cytotoxic activity that may suggest the importance of phenolic constituents in anticancer activity. Moreover, the results also showed a definite dose dependent relationship between amount of fractions and cytotoxic activity

    A multifunctional ribonuclease A-conjugated carbon dot cluster nanosystem for synchronous cancer imaging and therapy

    Get PDF
    Carbon dots exhibit great potential in applications such as molecular imaging and in vivo molecular tracking. However, how to enhance fluorescence intensity of carbon dots has become a great challenge. Herein, we report for the first time a new strategy to synthesize fluorescent carbon dots (C-dots) with high quantum yields by using ribonuclease A (RNase A) as a biomolecular templating agent under microwave irradiation. The synthesized RNase A-conjugated carbon dots (RNase A@C-dots) exhibited quantum yields of 24.20%. The fluorescent color of the RNase A@C-dots can easily be adjusted by varying the microwave reaction time and microwave power. Moreover, the emission wavelength and intensity of RNase A@C-dots displayed a marked excitation wavelength-dependent character. As the excitation wavelength alters from 300 to 500 nm, the photoluminescence (PL) peak exhibits gradually redshifts from 450 to 550 nm, and the intensity reaches its maximum at an excitation wavelength of 380 nm. Its Stokes shift is about 80 nm. Notably, the PL intensity is gradually decreasing as the pH increases, almost linearly dependent, and it reaches the maximum at a pH = 2 condition; the emission peaks also show clearly a redshift, which may be caused by the high activity and perfective dispersion of RNase A in a lower pH solution. In high pH solution, RNase A tends to form RNase A warped carbon dot nanoclusters. Cell imaging confirmed that the RNase A@C-dots could enter into the cytoplasm through cell endocytosis. 3D confocal imaging and transmission electron microscopy observation confirmed partial RNase A@C-dots located inside the nucleus. MTT and real-time cell electronic sensing (RT-CES) analysis showed that the RNase A@C-dots could effectively inhibit the growth of MGC-803 cells. Intra-tumor injection test of RNase A@C-dots showed that RNase A@C-dots could be used for imaging in vivo gastric cancer cells. In conclusion, the as-prepared RNase A@C-dots are suitable for simultaneous therapy and in vivo fluorescence imaging of nude mice loaded with gastric cancer or other tumors

    Low-complexity symbol detection and interference cancellation for OTFS system

    Get PDF
    Orthogonal time frequency space (OTFS) is a two-dimensional modulation scheme realized in the delay-Doppler domain, which targets the robust wireless transmissions in high-mobility environments. In such scenarios, OTFS signal suffers from multipath channel with continuous Doppler spread, which results in significant inter-symbol interference and inter-Doppler interference (IDI). In this paper, we analyze the interference generation mechanism, and compare statistical distributions of the IDI in two typical cases, i.e., limited-Doppler-shift channel and continuous-Doppler-spread channel (CoDSC). Focusing on the OTFS signal transmission over the CoDSC, our study firstly indicates that the widespread IDI incurs a computational burden for the element-wise detector like the message passing in the state-of-the-art works. Addressing this challenge, we propose a block-wise OTFS receiver by exploiting the structure and characteristics of the OTFS transmission matrix. In the receiver, we deliberately design an iteration strategy among the least squares minimum residual based channel equalizer, reliability-based symbol detector and interference eliminator, which can realize fast convergence by leveraging the sparsity of channel matrix. The simulations demonstrate that, in the CoDSC, the proposed scheme achieves much less detection error, and meanwhile reduces the computational complexity by an order of magnitude, compared with the state-of-the-art OTFS receivers

    Low-dimensional subspace estimation of continuous-doppler-spread channel in OTFS systems

    Get PDF
    Orthogonal time frequency space (OTFS) has shown to be a promising modulation technology that achieves the robust wireless transmission in high-mobility environments. The high mobility incurred Doppler effect in OTFS system, is represented as a continuous and relatively large band in the Doppler frequency. It yields the equivalent channel responses (ECRs) in the system change significantly within one symbol block, posing a challenge to channel estimation (CE) or tracking. In order to tackle this issue, in this paper, a set of transform-domain basis functions is designed to span a low-dimensional subspace for modeling the OTFS channel. Then, the CE can be performed by estimating a few projection coefficients of ECRs in the developed subspace, with training pilots. According to the individual transmission characteristic of OTFS signal, we propose a corner-inserted pilot pattern, which targets the low pilot overhead and satisfactory CE performance. Moreover, an OTFS signal detector, leveraging the time-domain channel equalization, linear-complexity interference cancellation and delay-Doppler domain maximal ratio combining detection, is developed to retrieve the transmitted data symbols. The simulations show the precisely estimated ECRs enable the detector to ideally demodulate 256-ary quadrature amplitude modulation signaling, under a velocity of 550 km/h at 5.9 GHz carrier frequency
    corecore