171,395 research outputs found

    Analogues of Auslander–Yorke theorems for multi-sensitivity

    No full text

    Visible light driven photocatalysis mediated via ligand-to-metal charge transfer (LMCT): An alternative approach to solar activation of titania

    Get PDF
    Visible light harvesting or utilization through semiconductor photocatalysis is a key technology for solar chemical conversion processes. Although titania nanoparticles are popular as a base material of photocatalysis, the lack of visible light activity needs to be overcome. This mini-review is focused on an uncommon approach to visible light activation of titania: the ligand-to-metal charge transfer (LMCT) that takes place between TiO2 nanoparticles and surface adsorbates under visible light irradiation. We discuss a basic concept of photoinduced LMCT and the recent advances in LMCT-mediated visible light photocatalysis which has been applied in environmental remediation and solar energy conversion. Although the LMCT processes have been less investigated and limited in photocatalytic applications compared with other popular visible light activation methods such as impurity doping and dye sensitization, they provide lots of possibilities and flexibility in that a wide variety of organic or inorganic compounds can form surface complexes with TiO2 and introduce a new absorption band in the visible light region. The LMCT complexes may serve as a visible light sensitizer that initiates the photocatalytic conversion of various substrates or the self-degradation of the ligand complexes (usually pollutants) themselves. We summarized and discussed various LMCT photocatalytic systems and their characteristics. The LMCT-mediated activation of titania and other wide bandgap semiconductors has great potential to be developed as a more general method of solar energy utilization in photocatalytic systems. More systematic design and utilization of LMCT complexes on semiconductors are warranted to advance the solar-driven chemical conversion processes.open11144136Ysciescopu

    Measurement of surface potential decay of corona-charged polymer films using the pulsed electroacoustic method

    No full text
    In this paper, the pulsed electroacoustic (PEA) technique that allows the determination of space charge in a dielectric material has been used to monitor the electrical potential decay of corona-charged polyethylene films of different thicknesses. To prevent possible disturbance on the surface charge during the PEA measurements, two thin polyethylene films were placed on both sides of the corona-charged sample. Charge profiles measured at different times were used to calculate the potential across the sample. The obtained potential decay was compared with the potential measured using the conventional method. A good agreement has been obtained. More importantly, the charge profile obtained using the PEA technique indicates that bipolar charge injection has taken place

    NMR Probing Spin Excitations in the Ring-Like Structure of a Two-Subband System

    Full text link
    Resistively detected nuclear magnetic resonance (NMR) is observed inside the ring-like structure, with a quantized Hall conductance of 6e^2/h, in the phase diagram of a two subband electron system. The NMR signal persists up to 400 mK and is absent in other states with the same quantized Hall conductance. The nuclear spin-lattice relaxation time, T1, is found to decrease rapidly towards the ring center. These observations are consistent with the assertion of the ring-like region being a ferromagnetic state that is accompanied by collective spin excitations.Comment: 4 pages, 4 figure
    corecore