63 research outputs found

    Tracking Rural Health Facility Financial Data in Resource-Limited Settings: A Case Study from Rwanda

    Get PDF
    Chunling Lu and colleagues describe a project for tracking health center financial data in two rural districts of Rwanda, which could be adapted for other low- or middle-income countries. Please see later in the article for the Editors' Summar

    Pretreatment Donors after Circulatory Death with Simvastatin Alleviates Liver Ischemia Reperfusion Injury through a KLF2-Dependent Mechanism in Rat

    Get PDF
    Objective. Severe hepatic ischemia reperfusion injury (IRI) can result in poor short- and long-term graft outcome after transplantation. The way to improve the viability of livers from donors after circulatory death (DCD) is currently limited. The aim of the present study was to explore the protective effect of simvastatin on DCD livers and investigate the underlying mechanism. Methods. 24 male rats randomly received simvastatin or its vehicle. 30 min later, rat livers were exposed to warm ischemia in situ for 30 min. Livers were removed and cold-stored in UW solution for 24 h, subsequently reperfused for 60 min with an isolated perfused rat liver system. Liver injury was evaluated during and after warm reperfusion. Results. Pretreatment of DCD donors with simvastatin significantly decreased IRI liver enzyme release, increased bile output and ATP, and ameliorated hepatic pathological changes. Simvastatin maintained the expression of KLF2 and its protective target genes (eNOS, TM, and HO-1), reduced oxidative stress, inhibited innate immune responses and inflammation, and increased the expression of Bcl-2/Bax to suppress hepatocyte apoptosis compared to DCD control group. Conclusion. Pretreatment of DCD donors with simvastatin improves DCD livers’ functional recovery probably through a KLF2-dependent mechanism. These data suggest that simvastatin may provide a potential benefit for clinical DCD liver transplantation

    Multimodal memory T cell profiling identifies a reduction in a polyfunctional Th17 state associated with tuberculosis progression

    Get PDF
    Mycobacterium tuberculosis (M.tb) results in 10 million active tuberculosis (TB) cases and 1.5 million deaths each year, making it the world's leading infectious cause of death. Infection leads to either an asymptomatic latent state or TB disease. Memory T cells have been implicated in TB disease progression, but the specific cell states involved have not yet been delineated because of the limited scope of traditional profiling strategies. Furthermore, immune activation during infection confounds underlying differences in T cell state distributions that influence risk of progression. Here, we used a multimodal single-cell approach to integrate measurements of transcripts and 30 functionally relevant surface proteins to comprehensively define the memory T cell landscape at steady state (i.e., outside of active infection). We profiled 500,000 memory T cells from 259 Peruvians > 4.7 years after they had either latent M.tb infection or active disease and defined 31 distinct memory T cell states, including a CD4+CD26+CD161+CCR6+ effector memory state that was significantly reduced in patients who had developed active TB (OR = 0.80, 95% CI: 0.73-0.87, p = 1.21 x 10-6). This state was also polyfunctional; in ex vivo stimulation, it was enriched for IL-17 and IL-22 production, consistent with a Th17-skewed phenotype, but also had more capacity to produce IFNgamma than other CD161+CCR6+ Th17 cells. Additionally, in progressors, IL-17 and IL-22 production in this cell state was significantly lower than in non-progressors. Reduced abundance and function of this state may be an important factor in failure to control M.tb infection. ### Competing Interest Statement The authors have declared no competing interest

    Micromechanics Modeling of Transverse Tensile Strength for Unidirectional CFRP Composite

    No full text
    Transverse tensile strength of unidirectional (UD) composites plays a key role in overall failure of fiber-reinforced composites. To predict this strength by micromechanics, calculation of actual stress in constituent matrix is essentially required. However, traditional micromechanics models can only give the volume-averaged homogenized stress rather than an actual one for a matrix, which in practice will cause large errors. In this paper, considering the effect of stress concentration on a matrix, a novel micromechanics method was proposed to give an accurate calculation of the actual stress in the matrix for UD composite under transverse tension. A stress concentration factor for a matrix in transverse tensile direction is defined, using line-averaged pointwise stress (obtained from concentric cylinder assemblage model) divided by the homogenized quantity (obtained from a bridging model). The actual stress in matrix is then determined using applied external stress multiplied by the factor. Experimental validation on six UD carbon fiber-reinforced polymer (CFRP) specimens indicates that the predicted transverse tensile strength by the proposed method presents a minor deviation with an averaged relative error of 5.45% and thus is reasonable, contrary to the traditional method with an averaged relative error of 207.27%. Furthermore, the morphology of fracture section of the specimens was studied by scanning electron microscopy (SEM). It was observed that different scaled cracks appeared within the matrix, indicating that failure of a UD composite under transverse tension is mainly governed by matrix failure. Based on the proposed approach, the transverse tensile strength of a UD composite can be accurately predicted

    Mechanically Robust Hybrid POSS Thermoplastic Polyurethanes with Enhanced Surface Hydrophobicity

    No full text
    A series of hybrid thermoplastic polyurethanes (PUs) were synthesized from bi-functional polyhedral oligomeric silsesquioxane (B-POSS) and polycaprolactone (PCL) using 1,6-hexamethylene diisocyanate (HDI) as a coupling agent for the first time. The newly synthesized hybrid materials were fully characterized in terms of structure, morphology, thermal and mechanical performance, as well as their toughening effect toward polyesters. Thermal gravimeter analysis (TGA) and differential scanning calorimetry (DSC) showed enhanced thermal stability by 76 °C higher in decomposition temperature (Td) of the POSS PUs, and 22 °C higher glass transition temperature (Tg) when compared with control PU without POSS. Static contact angle results showed a significant increment of 49.8° and 53.4° for the respective surface hydrophobicity and lipophilicity measurements. More importantly, both storage modulus (G’) and loss modulus (G’’) are improved in the hybrid POSS PUs and these parameters can be further adjusted by varying POSS content in the copolymer. As a biodegradable hybrid filler, the as-synthesized POSS PUs also demonstrated a remarkable effect in toughening commercial polyesters, indicating a simple yet useful strategy in developing high-performance polyester for advanced biomedical applications

    Micromechanics Modeling of Transverse Tensile Strength for Unidirectional CFRP Composite

    No full text
    Transverse tensile strength of unidirectional (UD) composites plays a key role in overall failure of fiber-reinforced composites. To predict this strength by micromechanics, calculation of actual stress in constituent matrix is essentially required. However, traditional micromechanics models can only give the volume-averaged homogenized stress rather than an actual one for a matrix, which in practice will cause large errors. In this paper, considering the effect of stress concentration on a matrix, a novel micromechanics method was proposed to give an accurate calculation of the actual stress in the matrix for UD composite under transverse tension. A stress concentration factor for a matrix in transverse tensile direction is defined, using line-averaged pointwise stress (obtained from concentric cylinder assemblage model) divided by the homogenized quantity (obtained from a bridging model). The actual stress in matrix is then determined using applied external stress multiplied by the factor. Experimental validation on six UD carbon fiber-reinforced polymer (CFRP) specimens indicates that the predicted transverse tensile strength by the proposed method presents a minor deviation with an averaged relative error of 5.45% and thus is reasonable, contrary to the traditional method with an averaged relative error of 207.27%. Furthermore, the morphology of fracture section of the specimens was studied by scanning electron microscopy (SEM). It was observed that different scaled cracks appeared within the matrix, indicating that failure of a UD composite under transverse tension is mainly governed by matrix failure. Based on the proposed approach, the transverse tensile strength of a UD composite can be accurately predicted

    Micromechanics Modeling of Transverse Tensile Strength for Unidirectional CFRP Composite

    No full text
    Transverse tensile strength of unidirectional (UD) composites plays a key role in overall failure of fiber-reinforced composites. To predict this strength by micromechanics, calculation of actual stress in constituent matrix is essentially required. However, traditional micromechanics models can only give the volume-averaged homogenized stress rather than an actual one for a matrix, which in practice will cause large errors. In this paper, considering the effect of stress concentration on a matrix, a novel micromechanics method was proposed to give an accurate calculation of the actual stress in the matrix for UD composite under transverse tension. A stress concentration factor for a matrix in transverse tensile direction is defined, using line-averaged pointwise stress (obtained from concentric cylinder assemblage model) divided by the homogenized quantity (obtained from a bridging model). The actual stress in matrix is then determined using applied external stress multiplied by the factor. Experimental validation on six UD carbon fiber-reinforced polymer (CFRP) specimens indicates that the predicted transverse tensile strength by the proposed method presents a minor deviation with an averaged relative error of 5.45% and thus is reasonable, contrary to the traditional method with an averaged relative error of 207.27%. Furthermore, the morphology of fracture section of the specimens was studied by scanning electron microscopy (SEM). It was observed that different scaled cracks appeared within the matrix, indicating that failure of a UD composite under transverse tension is mainly governed by matrix failure. Based on the proposed approach, the transverse tensile strength of a UD composite can be accurately predicted

    Thin polymer electrolyte with MXene functional layer for uniform Li+ deposition in all-solid-state lithium battery

    No full text
    Solid polymer electrolyte (SPE) shows great potential for all-solid-state batteries because of the inherent safety and flexibility; however, the unfavourable Li+ deposition and large thickness hamper its development and application. Herein, a laminar MXene functional layer‒thin SPE layer‒cathode integration (MXene-PEO-LFP) is designed and fabricated. The MXene functional layer formed by stacking rigid MXene nanosheets imparts higher compressive strength relative to PEO electrolyte layer. And the abundant negatively-charged groups on MXene functional layer effectively repel anions and attract cations to adjust the charge distribution behavior at electrolyte–anode interface. Furthermore, the functional layer with rich lithiophilic groups and outstanding electronic conductivity results in low Li nucleation overpotential and nucleation energy barrier. In consequence, the cell assembled with MXene-PEO-LFP, where the PEO electrolyte layer is only 12 μm, much thinner than most solid electrolytes, exhibits uniform, dendrite-free Li+ deposition and excellent cycling stability. High capacity (142.8 mAh g−1), stable operation of 140 cycles (capacity decay per cycle, 0.065%), and low polarization potential (0.5 C) are obtained in this Li|MXene-PEO-LFP cell, which is superior to most PEO-based electrolytes under identical condition. This integrated design may provide a strategy for the large-scale application of thin polymer electrolytes in all-solid-state battery

    Study on the surface defect of aluminum alloy hole burnishing

    No full text
    The surface finish of holes plays a crucial role in their fatigue life, which is significantly compromised by the surface defect (SD) that appears during the burnishing process. In this paper, a kinematic model for hole burnishing was developed to study the formation mechanism of the SD, proposing the existence of the critical burnishing depth (BD) value. Hole burnishing experiments were conducted on aluminum alloy 7050, and the critical BD value was found to be approximately 0.14 mm, validating its existence. When the BD was less than the critical value, the burnished surface was smooth, and the fatigue life increased. When the BD exceeded the critical value, the SD appeared, and the fatigue life decreased
    • …
    corecore