137 research outputs found
Fast antijamming timing acquisition using multilayer synchronization sequence
Pseudonoise (PN) sequences are widely used as preamble sequences to establish timing synchronization in military wireless communication systems. At the receiver, searching and detection techniques, such as the full parallel search (FPS) and the serial search (SS), are usually adopted to acquire correct timing position. However, the synchronization sequence has to be very long to combat jamming that reduces the signal-to-noise ratio (SNR) to an extremely low level. In this adverse scenario, the FPS scheme becomes too complex to implement, whereas the SS method suffers from the drawback of long mean acquisition time (MAT). In this paper, a fast timing acquisition method is proposed, using the multilayer synchronization sequence based on cyclical codes. Specifically, the transmitted preamble is the Kronecker product of Bose–Chaudhuri-Hocquenghem (BCH) codewords and PN sequences. At the receiver, the cyclical nature of BCH codes is exploited to test only a part of the entire sequence, resulting in shorter acquisition time. The algorithm is evaluated using the metrics of MAT and detection probability (DP). Theoretical expressions of MAT and DP are derived from the constant false-alarm rate (CFAR) criterion. Theoretical analysis and simulation results show that our proposed scheme dramatically reduces the acquisition time while achieving similar DP performance and maintaining a reasonably low real-time hardware implementation complexity, in comparison with the SS schem
Achievable Rate of Rician Large-Scale MIMO Channels with Transceiver Hardware Impairments
Transceiver hardware impairments (e.g., phase noise,
in-phase/quadrature-phase (I/Q) imbalance, amplifier non-linearities, and
quantization errors) have obvious degradation effects on the performance of
wireless communications. While prior works have improved our knowledge on the
influence of hardware impairments of single-user multiple-input multiple-output
(MIMO) systems over Rayleigh fading channels, an analysis encompassing the
Rician fading channel is not yet available. In this paper, we pursue a detailed
analysis of regular and large-scale (LS) MIMO systems over Rician fading
channels by deriving new, closed-form expressions for the achievable rate to
provide several important insights for practical system design. More
specifically, for regular MIMO systems with hardware impairments, there is
always a finite achievable rate ceiling, which is irrespective of the transmit
power and fading conditions. For LS-MIMO systems, it is interesting to find
that the achievable rate loss depends on the Rician -factor, which reveals
that the favorable propagation in LS-MIMO systems can remove the influence of
hardware impairments. However, we show that the non-ideal LS-MIMO system can
still achieve high spectral efficiency due to its huge degrees of freedom.Comment: 7 pages, 1 table, 3 figures, accepted to appear in IEEE Transactions
on Vehicular Technolog
Low-complexity iterative frequency domain decision feedback equalization
Single-carrier transmission with frequency domain equalization (SC-FDE) offers a viable design alternative to the classic orthogonal frequency division multiplexing technique. However, SC-FDE using a linear equalizer may suffer from serious performance deterioration for transmission over severely frequency-selective fading channels. An effective method of solving this problem is to introduce non-linear decision feedback equalization (DFE) to SC-FDE. In this contribution, a low complexity iterative decision feedback equalizer operating in the frequency domain of single-carrier systems is proposed. Based on the minimum mean square error criterion, a simplified parameter estimation method is introduced to calculate the coefficients of the feed-forward and feedback filters, which significantly reduces the implementation complexity of the equalizer. Simulation results show that the performance of the proposed simplified design is similar to the traditional iterative block DFE under various multipath fading channels but it imposes a much lower complexity than the latter
The correlation between variation of radon content in groundwater and earthquakes
During the last 30 years, multidisciplinary studies of earthquake precursors have been performed in China. This paper introduces some results of the research on the correlation between variation of radon content in groundwater and earthquakes and the general features and complexity of earthquake precursors. After the 1966 Xingtai MS47.2 earthquake, using radon content variation in groundwater to predict earthquakes has been systematically studied in China. In the last 30 years a lot of observational data on earthquake precursors have been accumulated, and researches on the correlation between the variation of radon content in groundwater and earthquakes have been carried out
- …