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Achievable Rate of Rician Large-Scale MIMO
Channels with Transceiver Hardware Impairments

Jiayi Zhang, Linglong Dai, Xinlin Zhang, Emil Björnson, and Zhaocheng Wang

Abstract—Transceiver hardware impairments (e.g., phase
noise, in-phase/quadrature-phase (I/Q) imbalance, amplifier non-
linearities, and quantization errors) have obvious degradation
effects on the performance of wireless communications. While
prior works have improved our knowledge on the influence of
hardware impairments of single-user multiple-input multiple-
output (MIMO) systems over Rayleigh fading channels, an
analysis encompassing the Rician fading channel is not yet
available. In this paper, we pursue a detailed analysis of regular
and large-scale (LS) MIMO systems over Rician fading channels
by deriving new, closed-form expressions of the achievable rate
to provide several important insights for practical system design.
More specifically, for regular MIMO systems with hardware
impairments, there is always a finite achievable rate ceiling, which
is irrespective of the transmit power and fading conditions. For
LS-MIMO systems, it is interesting to find that the achievable
rate loss is independent of the Rician K-factor, which reveals that
the favorable propagation in LS-MIMO systems cannot remove
the influence of hardware impairments. However, we show that
the non-ideal LS-MIMO system can still achieve high spectral
efficiency due to its huge degrees of freedom.

Index Terms—Achievable rate, large-scale MIMO, hardware
impairments, Rician channel.

I. INTRODUCTION

By employing multiple antennas at the transceiver, wireless
systems can significantly increase the spectral efficiency and
transmission reliability. The capacity of single-user MIMO
systems has been well investigated in the literature [1]. How-
ever, most prior works assume that ideal hardware is available
at both the transmitter and receiver, which is unrealistic in
practice, while the performance of practical MIMO systems
is usually affected by transceiver hardware impairments, such
as phase noise, I/Q imbalance, amplifier non-linearities, and
quantization errors [2]. Although the influence of these im-
pairments can be mitigated by calibration methods and com-
pensation schemes at both sides, there still remains residual

Copyright © 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

This work was supported in part by the International Science & Technology
Cooperation Program of China (Grant No. 2015DFG12760), the National
Natural Science Foundation of China (Grant Nos. 61571270 and 61201185),
and China Postdoctoral Science Foundation (No. 2014M560081). E. Björnson
was supported by ELLIIT and the CENIIT project 15.01.

J. Zhang, L. Dai and Z. Wang are with Department of Electronic Engi-
neering as well as Tsinghua National Laboratory of Information Science and
Technology (TNList), Tsinghua University, Beijing 100084, P. R. China (e-
mails: {jiayizhang, daill, zcwang}@tsinghua.edu.cn).

X. Zhang is with Department of Signals and Systems, Chalmers University
of Technology, Gothenburg, Sweden (e-mail: xinlin@chalmers.se).

E. Björnson is with Department of Electrical Engineering (ISY), Linköping
University, Linköping, Sweden (e-mail: emil.bjornson@liu.se).

hardware impairments due to estimation errors, inaccurate
calibration methods and different types of noise [3].

Recently, the large-scale (LS)-MIMO communication has
drawn substantial interest from both academia and industry
as a promising technology for 5G wireless systems, such
as millimeter wave (mmWave) communications. LS-MIMO
systems are likely to operate in the mmWave band to ac-
commodate many antennas within a small physical area. In
LS-MIMO systems, each base station is equipped with a
large number of antennas to improve the spectral and energy
efficiency. Understanding the fundamental theoretical limits
of the LS-MIMO system has been an active research area.
For practical implementation, it is very attractive to deploy
LS antenna elements with cheap, compact and power-efficient
radio and digital-processing hardware. Thus, it is of profound
importance to theoretically investigate how much hardware
impairments can the LS-MIMO system tolerate to achieve a
certain achievable rate performance.

Motivated by these observations, some researchers have
analyzed the impact of transceiver hardware impairments on
MIMO system performance. Specifically, experimental results
to model the statistical behavior of residual hardware im-
pairments on regular1 MIMO systems have been provided in
pioneering works such as [4], [5]. Utilizing this impairment
model, the authors of [6] and [7] analyzed the achievable rate
of regular MIMO systems in detail. With the rapid devel-
opment of LS-MIMO systems, people shift their interests to
hardware impairments of LS-MIMO systems. In this context,
the single type of impairments have been considered in [8]–
[11] in terms of power amplifier nonlinearities, mismatched
joint decoding, and phase noise. Moreover, [2], [7], [12]
examined in detail the achievable rate of LS-MIMO systems
by taking into account the effects of transceiver hardware
impairments.

The common characteristic of aforementioned works, how-
ever, is that they consider Rayleigh fading channels. Although
the assumption of Rayleigh fading extensively simplifies the
performance analysis, its validity is often violated in practical
wireless propagation scenarios with the line-of-sight (LoS)
path, where the Rician fading model is more general and
accurate [13]. To the best of our knowledge, a detailed
analysis of MIMO systems over Rician fading channels in
the presence of transceiver hardware impairments is missing
in the literature. Only recently, the high-SNR capacity limit of
regular MIMO systems over Rician fading channels has been

1In contrast to the LS-MIMO system, we use the terminology regular
MIMO for systems with small number of antennas at the transmitter and
receiver, e.g., smaller than 8 antennas.
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established in [6]. In this paper, we aim to fill in this gap
by investigating the impact of hardware impairments on the
achievable rate of regular and LS-MIMO systems over Rician
fading channels. Specifically, the contributions of this paper
are summarized as:

• We derive a new analytical achievable rate expression
for regular MIMO systems subject to Rician fading and
hardware impairments. Although the expression is given
in infinite series, the truncation error has been obtained to
demonstrate its fast convergence. Additionally, we present
asymptotic achievable rate expressions in the high-SNR
regime, which coincide with the results of [6]. Moreover,
based on our analysis, there is always a ceiling on the
achievable rates of regular MIMO systems.

• For LS-MIMO systems, asymptotic expressions of the
achievable rate are presented for three typical types of
antenna arrays. Assuming perfect channel state informa-
tion (CSI) at the receiver and no CSI at the transmitter,
it is interesting to find that the achievable rate ceiling
disappears by deploying a huge number of antennas
at the transceiver. Moreover, our results show that the
achievable rate gap between hardware impairments and
perfect hardware increases with the value of the Rician
K-factor.

The remainder of the paper is organized as follows: In Sec-
tion II, the single-user MIMO channel model used throughout
the paper is briefly introduced. Section III provides a detailed
achievable rate analysis of MIMO systems with transceiver
hardware impairments over Rician fading channels. A set of
numerical results is given in Section IV. Finally, Section V
concludes the paper.

II. SYSTEM AND CHANNEL MODEL

We consider a single-user MIMO system with Nt transmit
antennas and Nr receive antennas, and assume that perfect
CSI is available at the receiver, while no CSI can be obtained
at the transmitter. The system model can be written as

y = Hx+ n, (1)

where y ∈ CNr×1 denotes the received signal vector, x ∈
CNt×1 is the transmitted signal vector with zero mean and
covariance matrix E

[
xxH

]
= Q with E[·] being the ex-

pectation operator and (·)H being the Hermitian operation,
and n ∈ CNr×1 denotes the vector of zero-mean complex
circularly symmetric additive white Gaussian noise (AWGN).
Moreover, H ∈ CNr×Nt represents the Rician channel matrix
modeling fast fading with a deterministic LoS path, which can
be modelled as [14]

H =

√
K

K + 1
H̄+

√
1

K + 1
Hω, (2)

where H̄ denotes the deterministic component, Hω denotes
the random fast fading component, which is composed of inde-
pendent and identically distributed (i.i.d.) circularly symmetric
complex Gaussian random variables with zero-mean and unit
variance, and K is the Rician factor denoting the power ratio

between H̄ and Hω . In this paper, we normalize the channel
matrix H as E[tr(HHH)] = NrNt.

In practical MIMO systems, the received signals will be
unavoidably distorted by impairments of transceiver hardware
components, such as filters, oscillators, converters, mixers and
amplifiers, in two different ways. First, the actually emitted
signals are different from the desired signals at the transmitter
due to transmitter hardware impairments. Second, the received
signals may suffer from distortion after the signal processing
due to receiver hardware impairments. Although several signal
compensation algorithms have been proposed and utilized at
each antenna, there still remains some residual transceiver
hardware impairments due to inaccurate modeling, imperfect
CSI, errors in the estimation of impairments’ parameters, and
so forth [7]2. Therefore, it is important to analyze the impact
of transceiver hardware impairments on the performance of
MIMO systems to provide useful guidance for practical sys-
tems design.

The aggregate transceiver hardware impairments can be
approximated by independent additive distortion noises at both
transmitter and receiver, which has been used and verified
by experiments in many previous works [2], [7], [12]. This
model is both analytically tractable and match experimental
results accurately. Based on the system model (1), the actually
received signal can be denoted as [12]

y = H(x+ ηt) + ηr + n, (3)

where the additive distortion noise terms ηt and ηr are ergodic
stochastic processes that describe the hardware impairments at
the transmitter and the receiver, respectively. The experimental
results have uncovered key characteristics that ηt and ηr

follow Gaussian distribution with variance proportional to the
average signal power [4], [5]. Moreover, ηt and ηr can be
analytically approximated by the central limit theorem as ηt ∼
CN (0, δ2t diag(q1, · · · , qNt)) and ηr ∼ CN (0, δ2r tr(Q)INr )
[12], where q1, q2, · · · , qNt are the diagonal elements of the
signal covariance matrix Q. Note that the new system model
(3) is more general than the canonical model (1) and captures
dominant practical characteristics of transceiver hardware im-
pairments. The proportionality parameters δt and δr are related
to the error vector magnitude (EVM) metric, which is widely
used to quantify the mismatch between the expected signal
and the actual signal in RF transceivers [15]. In practical
wireless systems, such as long term evolution (LTE), the
EVM requirements are in the range δt ∈ [0.08, 0.175] [15].
Note that larger values of δt and δr indicate that the MIMO
system experiences higher levels of impairments caused by
inaccurate transceiver hardware components. Moreover, the
case of δt = δr = 0 corresponds to ideal transceiver hardware
components.

III. ACHIEVABLE RATE

In this section, we present a detailed achievable rate analysis
of MIMO systems with transceiver hardware impairments over

2Among these residual transceiver hardware impairments, the phase noise
is probably the most severe factor in single-carrier transmission, while it is
still not clear in multi-carrier systems [2], [9], [10].
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Rician fading channels. Recall that neither instantaneous nor
statistical CSI is available at the transmitter but perfectly
known at the receiver, we use equal power allocation on each
transmit antenna as Q = P

Nt
INt with the total transmit power

P . Moreover, the average SNR per receive antenna is defined
as ρ = E[tr(Q)]/N0, where N0 denotes the noise variance,
which is normalized as N0 = 1 in the following analysis.
The system model (3) considering hardware impairments can
be written in the form of the canonical model (1) with noise
variance

Φ !
{

ρδ2t
Nt

HHH+
(
ρδ2r + 1

)
INt , if Nt < Nr,

ρδ2t
Nt

HHH +
(
ρδ2r + 1

)
INr , if Nt ≥ Nr.

(4)

We further assume an ergodic channel where each codeword
spans over an infinite number of realizations of the fading H.
Then, the ergodic achievable rate R can be expressed as [1]

R !

⎧
⎨

⎩
E
[
log2 det

(
INt +

ρ
Nt

HHHΦ−1
)]

, if Nt < Nr,

E
[
log2 det

(
INr +

ρ
Nt

HHHΦ−1
)]

, if Nt ≥ Nr.

(5)

A. Exact Analysis

For notational convenience, we define p ! max(Nt, Nr),
q ! min(Nt, Nr), and the instantaneous MIMO channel
correlation matrix W as

W !
{
HHH, if Nt < Nr,

HHH , if Nt ≥ Nr.
(6)

Note that W is a complex non-central Wishart matrix [16].

Lemma 1. The exact achievable rate of MIMO systems with
residual hardware impairments over Rician fading channels
can be expressed as

R =
G

ln(2)

q∑

n=1

q∑

m=1

Dn,m

∞∑

k=0

Γ (p− q +m+ k)φkn
Γ (k + 1) (p− q + 1)k

×
p−q+m+k∑

t=1

(
e(K+1)/aEp−q+m+k−t+1

(
K + 1

a

)

− e(K+1)/bEp−q+m+k−t+1

(
K + 1

b

))
, (7)

where (x)z ! Γ(x+ z)/Γ(x), a ! ρ(1+δ2t )
Nt(1+ρδ2r)

, b ! ρδ2t
Nt(1+ρδ2r)

,
Ez (x) =

∫∞
1 t−ze−xtdt is the exponential integral function

[17, Eq. (8.211.1)], φ = [φ1,φ2, · · · ,φq]T is the squared
singular values of

√
KH̄, and

G !
∏q

i=1 e
−φi

[(p− q)!]q
∏

1≤i<j≤q
(φj − φi)

. (8)

Moreover, Dn,m denotes the (n,m)th cofactor of the (q × q)
matrix Ω given by

Ωn,m = Γ (p− q +m) 1F1 (p− q +m, p− q + 1,φn) . (9)

Proof: The marginal probability density function (PDF)

of an unordered squared singular value of W is given by [18]

f (λ) =
Ge−λ(K+1)

qλ

q∑

n=1

q∑

m=1

Dn,m((K + 1)λ)p−q+m

× 0F1 (p− q + 1; (K + 1)φnλ) , (10)

where 0F1(·) denotes the hypergeometric functions [17, Eq.

(9.14)] and can be expressed as 0F1 (x, y) =
∞∑

m=0

ym

m!(x)m
[19].

We can rewrite (5) as

R =
q

ln 2
E

[
ln

(
1 +

ρλ/Nt

ρδ2t λ/Nt + ρδ2r + 1

)]

=
q

ln 2
E [ln (1 + aλ)− ln (1 + bλ)] . (11)

By substituting (10) into (11), the first expectation of (11) can
be derived as

E [ln (1 + aλ)] =

∫ ∞

0
ln (1 + aλ)

Ge−λ(K+1)

qλ

q∑

n=1

q∑

m=1

Dn,m

× 0F1 (p− q + 1; (K + 1)φnλ) ((K + 1)λ)p−q+mdλ

=
G

q

q∑

n=1

q∑

m=1

Dn,m

∞∑

k=0

Γ (p− q +m+ k)φkn
Γ (k + 1) (p− q + 1)k

×
p−q+m+k∑

t=1

e(K+1)/aEp−q+m+k−t+1

(
K + 1

α

)
, (12)

where we have used the following integral identity [18]
∫ ∞

0
ln (1+αx)

xz−1

eβx
dx =

Γ (z)eβ/α

βz

z∑

l=1

Ez−l+1

(
β

α

)
. (13)

The second expectation of (11) can be derived in a similar way.
Then, the proof is ended by substituting the corresponding
results (e.g., (12)) into (11).

To show the fast convergence of the infinite series in
(7), we assume that only the T0 − 1 first terms are used.
Note that if x < y, the function exEn(x) − eyEn(y) is
monotonically decreasing in n according to the derivative
property of En(x) [19, Eq. (5.1.26)]. Then the truncation error
R0 is upper bounded as (14) at the bottom of next page, where

2F2 (α1,α2;β1,β2; z) =
∞∑
k=0

(α1)k(α2)k
(β1)k(β2)k

zk

k! is the generalized

hypergeometric function [17, Eq. (9.14.1)]. Moreover, the
required terms of series T0 has been investigated in Table I for
different parameters. To achieve a satisfactory accuracy, e.g.,
10−6, more terms are needed for larger values of K, Nt and
Nr. On the contrary, T0 decreases with the larger values of
SNR ρ. Finally, for all cases considered in Table I, only less
than 15 terms need to be calculated.

B. High-SNR Analysis

Although (7) is the exact achievable rate, it provides little
insight on how hardware impairments affect the achievable rate
of MIMO systems over Rician fading channels. For high-SNR
values, we can take ρ→ ∞ in (5) and follows a similar line of
reasoning as in Lemma 1. Then, the asymptotical achievable
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TABLE I
REQUIRED TERMS OF SERIES T0 TO ACHIEVE A SATISFACTORY

ACCURACY (≤ 10−6 )

ρ Nt Nr δt δr K T0

0 2 2 0.15 0.15 1 11
0 2 2 0.15 0.15 5 15
10 2 2 0.15 0.15 1 10
0 4 4 0.15 0.15 1 12
0 2 2 0.1 0.1 1 12

rate R approaches the finite limit

R∞ =
G

ln 2

q∑

n=1

q∑

m=1

Dn,m

∞∑

k=0

Γ (p− q +m+ k)φkn
Γ (k + 1) (p− q + 1)k

×
p−q+m+k∑

t=1

(
e(K+1)/a

′

Ep−q+m+k−t+1

(
K + 1

a′

)

− e(K+1)/b
′

Ep−q+m+k−t+1

(
K + 1

b′

))
, (15)

where a
′ ! (1+δ2t )

Ntδ2r
and b

′ ! δ2t
Ntδ2r

, respectively. Moreover,
assuming that the first T

′

0 − 1 terms are used in the infinite
series, the truncation error R

′

0 is upper bounded as

R
′

0 ≤
Γ
(
p− q +m+ T

′

0 + 1
)
φ
T

′
0

n

Γ
(
T

′
0 + 1

)
(p− q + 1)T ′

0

× 2F2

(
p−q+m+T

′

0+1, 1;T
′

0+1, p−q+T
′

0+1;φn
)

×
(
e(K+1)/a

′

E1

(
K+1

a′

)
−e(K+1)/b

′

E1

(
K+1

b′

))
. (16)

The term
(
e(K+1)/a

′
E1

(
K+1
a′

)
−e(K+1)/b

′
E1

(
K+1
b′

))
in

(15) becomes zero when k is large [17]. Then, the achievable
rate of MIMO systems over Rician fading channels with
residual hardware impairments approaches a finite ceiling
in the high-SNR regime, which is also found in the case
of Rayleigh fading channels in [7] and the case of any
fading channels with only transmitter impairments in [6]. This

effect can be explained as that the transceiver distortion will
increase with the transmit power. Accordingly, the equivalent
SNR, ρ

Nt
HHHΦ−1, in (5) will not increase. However, the

achievable rate R will increase to infinity with SNR if adopting
the ideal hardware. Moreover, (15) reveals that the residual
hardware impairments dominate on the achievable rate perfor-
mance of MIMO systems in the high-SNR regime.

C. Asymptotic LS-MIMO Analysis

In this section, we consider the achievable rate of three
asymptotic antenna deployment in LS-MIMO systems. Note
that our achievable rate analysis holds for any LoS model that
satisfy the limit of 1

pHHH a.s.−−→ Iq . If a uniform linear array
(ULA) is adopted at the transmitter, the (m,n)th entry H̄mn

is given by

H̄mn = e−j(m−1)(2πd/λ) sin θn , (17)

where d is the transmit antenna spacing, λ is the wavelength,
and θn is the arrival angle of the nth receive antenna. More-
over, we set d = λ/2, which means that there is not correlation
between receive antennas.

First, the number of transmit antennas Nt tends to in-
finity while the number of receiver antennas Nr is fixed.
According to the law of large numbers, the correlation matrix
1
Nt

HHH − INr

a.s.−−→ 0 [14, Lemma 2] as Nt → ∞, where
a.s. denotes almost sure convergence. To take the limit inside
the expectation in (5) by the dominated convergence theorem
[20], the achievable rate reduces to

RNt→∞ = Nrlog2

(
1 +

ρ

ρδ2t + ρδ2r + 1

)
, (18)

which indicates that the achievable rate of LS-MIMO systems
with infinite Nt depends on the transceiver distortions, trans-
mit SNR and the number of receiver antennas Nr. Moreover,
as we increase Nr, the achievable rate grows linearly. How-
ever, if Nr is fixed but SNR is increased, the achievable rate
asymptotically approaches the limit as we discuss in Section
III-B. This fact suggests that the achievable rate will saturate
in the high-SNR regime for Rician fading channels.

Then, we consider the second case, where the receiver em-
ploys large number of receiver antennas Nr but the number of

R0 =
∞∑

k=T0

Γ (p− q +m+ k)φkn
Γ (k + 1) (p− q + 1)k

p−q+m+k∑

t=1

(
e(K+1)/aEp−q+m+k−t+1

(
K + 1

a

)
− e(K+1)/bEp−q+m+k−t+1

(
K + 1

b

))

<
∞∑

k=T0

Γ (p− q +m+ k + 1)φkn
Γ (k + 1) (p− q + 1)k

(
e(K+1)/aE1

(
K + 1

a

)
− e(K+1)/bE1

(
K + 1

b

))

s=k−T0=======
Γ (p−q+m+T0+1)φT0

n

Γ (T0+1)Γ (p−q+T0+1)

∞∑

s=0

(p−q+m+T0+1)s(1)s
(T0+1)s(p−q+T0+1)s

φsn
s!

(
e(K+1)/aE1

(
K+1

a

)
−e(K+1)/bE1

(
K+1

b

))

=
Γ (p− q +m+ T0 + 1)φT0

n

Γ (T0 + 1) (p− q + 1)T0

2F2 (p− q +m+ T0 + 1, 1;T0 + 1, p− q + T0 + 1;φn)

×
(
e(K+1)/aE1

(
K + 1

a

)
− e(K+1)/bE1

(
K + 1

b

))
, (14)
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transmit antennas Nt is fixed. Recalling that the ULA model is
assumed and multiplying the term of

(
INt +

ρ
Nt

HHHΦ−1
)

in (5) by 1/Nr, the achievable rate (5) can be written as

R = E

{
log2 det

(
INt +

ρ
NtNr

HHH
ρδ2t

NtNr
HHH+ (ρδ2r+1)

Nr
INt

)}
.

(19)

As Nr → ∞, we utilize the dominated convergence theorem
and the fact that the noise term and receiver distortion term
go to zero. Then, (19) can approach to

RNr→∞ = Ntlog2

(
1 +

1

δ2t

)
. (20)

It is clear that the achievable rate grows linearly with
the number of transmit antennas Nt. Moreover, the receiver
distortion (denoted by δ2r ) and the SNR have no impact on the
achievable rate performance. This shows the key difference
from the first case with large Nt but fixed Nr, where both
transceiver distortions (denoted by δ2t and δ2r ) characterize the
system achievable rate performance. Such result suggests that
low-price hardware at the receiver is preferred in LS-MIMO
systems if hardware impairments are unavoidable.

Finally, the third case with large Nt and Nr and general
Rician fading model are considered, where the achievable rate
R can be reexpressed as

R = E

[
log2 det

(
ρ
(
1 + δ2t

)

Nt
HHH +

(
ρδ2r + 1

)
INr

)

− log2 det

(
ρδ2t
Nt

HHH +
(
ρδ2r + 1

)
INr

)]

= E

[
log2 det

(
aHHH + INr

)
+Nrlog2

(
ρδ2r + 1

)

− log2 det
(
bHHH + INr

)
−Nrlog2

(
ρδ2r + 1

)
]

= E
[
log2 det

(
aHHH + INr

)
− log2 det

(
bHHH + INr

)]

= J(1/a, INr )− J(1/b, INr ), (21)

where J(1/a, INr ) ! E
[
log2 det

(
aHHH + INr

)]
and

J(1/b, INr ) ! E
[
log2 det

(
bHHH + INr

)]
, respectively.

From [20, Theorem 6.14], we have a large-system approxima-
tion of the achievable rate J(1/a, INr ) for a large number of
antennas at both transmitter and receiver sides (Nt, Nr → ∞)
and uniform transmit power allocation as [20, Eq. (13.10)]

J(1/a, INr )−
[
log2 det

(
aΨ−1 + H̄Ψ̄H̄T

)

+ log2 det
(
aΨ−1

)
− log2 (e)

aNt

∑

i,j

viv̄j
K + 1

]
a.s.−−→ 0, (22)

where Ψ denotes the diagonal matrix with the ith entry
ψi, and Ψ̄ is the diagonal matrix with the jth entry ψ̄j ,
respectively. Moreover, we define vi and v̄j as the ith diagonal
entry of

(
Ψ̄−1 + 1

aH̄
TΨH̄

)−1 and the jth diagonal entry of(
Ψ−1 + 1

aH̄Ψ̄H̄T
)−1, respectively. As Nt → ∞, the error

SNR [dB]
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Fig. 1. Achievable rate of regular MIMO systems with hardware impairments
against SNR and Rician K-factor, where δt = δr = 0.15 and Nt = Nr = 2.

between the right hand side of (22) goes almost sure to zero.
It is clear from (22) that the approximation error decreases
asymptotically by increasing the number of transmit antennas
Nt. The entries ψi and ψ̄j can be obtained by solving the
following equations as
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ψ = a

[
1 +

1

Nt(K + 1)
tr

{(
1

ψ̄
INt +

ψ

a
H̄T H̄

)−1
}]−1

,

ψ̄ = a

[
1 +

1

Nt(K + 1)
tr

{(
1

ψ
INr +

ψ̄

a
H̄H̄T

)−1
}]−1

.

(23)
where tr(·) denotes the trace of a matrix.

Note that equations in (23) are fixed point iterations. The
unknown variables ψ and ψ̄ can be easily obtained by solving
the formulas in (23). Substituting ψ and ψ̄ into (22) and
using the similar method to calculate J(1/b, INr ), the desired
achievable rate R∞ can be derived.

IV. NUMERICAL RESULTS

In this section, we illustrate the key analytical insights pre-
sented in Section III by various numerical results and Monte-
Carlo simulations. For the ideal and non-ideal system, the
achievable rate results have been obtained by means of Monte-
Carlo simulations using 106 trails, respectively. Furthermore,
the LoS model in (17) has been used in our simulations.

In Fig. 1, the simulated achievable rate, the analytical result
(7) and the high-SNR approximation (15) of regular MIMO
systems with hardware impairments are compared against
SNR and Rician K-factor, where δt = δr = 0.15 and
Nt = Nr = 2 are considered. Figure 1 validates the accuracy
of our derived analytical expression in (7) and (15). For the
case of hardware impairments, it is clear there is a finite rate
ceiling, which cannot be crossed by increasing the SNR value.
Furthermore, we observe that an increase in SNR tends to
increase the achievable rate of both ideal and non-ideal system,
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Fig. 2. Achievable rate of LS-MIMO systems with hardware impairments
against the number of transmit and receive antennas Nt and Rician K-factor,
where δt = δr = 0.15, ρ = 10dB, and Nt = Nr .
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Fig. 3. Achievable rate loss of LS-MIMO systems with hardware impairments
against the number of transmit antennas Nt and Rician K-factor, where δt =
δr = 0.15, ρ = 10dB, and Nt = Nr .

albeit the relative difference between the curves gets steadily
larger. In addition, higher K values yield lower achievable rate,
although the gap between the corresponding curves decreases
as K increases, which implies that its effect becomes less
pronounced.

The achievable rate of single-user LS-MIMO systems with
ideal and non-ideal hardware is shown in Fig. 2, which reveals
that the finite achievable rate ceiling disappears for large
numbers of transmit and receive antennas. This phenomenon
is consistent with the results with Rayleigh fading channels in
[7], and can be explained as the reduction in effective SNR,
ρ/Nt, can be compensated by the large array gain at the
receiver. As expected, the increased LoS component (larger
values of K) will decrease the rank of correlation matrix and

the system’s achievable rate.
To further investigate the effect of the Rician K-factor on

the achievable rate of LS-MIMO systems, we introduce a
new metric as Rloss = (Rideal −Rnon−ideal)/Rideal, which
denotes the achievable rate loss between ideal and non-ideal
system with hardware impairments. Moreover, we assume that
the number of transmit and receive antenna grows together.
It is important to observe from Fig. 3 that the achievable
rate loss Rloss increases with the value of the Rician K-
factor. However, with a relatively large number of antennas
at both transmitter and receiver sides, the achievable rate
loss approaches a finite value. For example, the relative
achievable rate loss Rloss for K = 0 is around 15%, while
Rloss → 30.5% for the case of K = 100. Therefore, it is more
important to utilize ideal hardware at LS-MIMO systems when
operating over strong LoS environment.

V. CONCLUSIONS

In this paper, we present a detail achievable rate analysis
of regular and LS-MIMO systems under transceiver hardware
impairments and Rician fading conditions. New analytical
achievable rate results are derived for finite and infinite num-
ber of transceiver antennas. We obtain asymptotic high-SNR
achievable rate expression to reveal a finite ceiling in regular
MIMO systems. Moreover, the impact of the Rician K-factor
and hardware impairments on the achievable rate performance
are investigated. Our findings reveal that the achievable rate
ceiling vanishes by increasing both the number of transmit and
receive antennas in LS-MIMO systems. Finally, we conclude
that the achievable rate loss due to hardware impairments
increases with the value of the Rician K-factor.
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